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PhD Qualifying Exam in Macroeconomic Theory 
 
 
 
 
Instructions: This exam consists of three parts. There is one question in Part 1, one 
question in Part 2, and two questions in Part 3. Each part counts for 1/3 of your 
overall score on this exam, independent of the number of questions contained in 
that part. The allocation of points indicated within each part of this exam is simply 
a guide to the relative importance of each part of a multipart question. Your final 
scores on each part of this exam will be normalized so that each of the three parts 
gets equal weight. 
 
You have four hours to complete this exam. 
 
 
 
Suggestions for time management: You should allocate adequate time at the start 
of this exam to read this all the questions and decide which questions you wish to 
answer first. You should be sure to be mindful of the time if you get stuck on some 
part of the exam. If you are stuck, move on to other questions that you feel you can 
answer. 



Part 1. The Economic Impact of the Louisiana Purchase

The Louisiana Purchase (1803) roughly doubled the land size of the United States.
Develop a general equilibrium model to assess the economic impact of the Louisiana
Purchase as described below.

There is no specific correct answer; rather, you will be graded individually on how
well you apply dynamic general equilibrium analysis to address the question.

Please write clearly and darkly. Unreadable answers will receive no credit.

Read the entire question before answering any part of it.

(i) There are two consumption goods, food and non-food consumption. Food
accounts for about 50 percent of GNP, investment about 20 percent of GNP, non-food
consumption accounts for about 30 percent of GNP. Investment and non-food
consumption are produced from the same technology.

(ii) There are three production inputs for both goods: labor, capital and land. Land’s
share of income in food production is 20 percent, and is 5 percent in non-food
production.

(iii) Before the Louisiana Purchase, there is one unit of land. After the Louisiana
Purchase, there are 2 units of land. The land acquired in the Louisiana Purchase has
a comparative advantage in producing food.

The cost of the Louisiana Purchase was $18 per square mile, in 1803 dollars. The
purchase was equal to 3 percent of GNP in 1803. Today, the average value of that
land per square mile is about $3 million, in 2023 dollars. The price level today is about
17 times higher than it was in 1803.

(A) Summarize in words only, the key economic issues involved, and your ideas of
how you will address these issues.



(B) Write down your pre-Louisiana Purchase model, including all your
assumptions about preferences, endowments, technologies, constraints.

(C) Write down the equations and constraints and any other information that
characterize the model’s solution.

(D) Show the equations that characterize the steady state of the model. This should
include a price equation for land.

(E) Modify the model to incorporate the Louisiana Purchase, including your
assumptions about endowments, technologies, constraints.

(F) Write down the equations and constraints that characterize the model’s solution.
This should include price equations for the two types of land.

(G) - Show the equations that characterize the steady state of the model

(H) Describe an algorithm that could be used to construct the transition path
between the two steady states. What do you predict about the growth rate of the
economy after the Louisiana Purchase? Explain your answer.

(I) Use the model to show how to evaluate the benefits versus the cost of the
Louisiana purchase.

(J) Based on your analysis and the information provided, do you think that the
purchase price was a fair market price? Explain your answer.



Part 2

Points for parts of this problem add up to 10 points.

In this problem we consider the implications of two models for asset prices and the dy-

namics of inequality in the population. The models are identical except in one key dimension.

In the first model, all individuals face the same stochastic shocks to their endowments, so

that the aggregate and individual’s endowment are the same. In the second model, the

shocks are independent across individuals so that the aggregate endowment is deterministic.

Both models are in discrete time t ∈ {0, 1, 2, . . .}. The economy is populated with a

measure one continuum of individuals who start with the same endowment of the single final

consumption good denoted by y0. At the start of every period, each individual experiences

an endowment growth shock gt so that individuals’ endowments in period t ≥ 1 are given by

yt(h
t) = gtyt−1(h

t−1), where ht = (y0, g1, g2, . . . , gt) is the time-t history of initial endowment

and endowment growth shocks, and yt(h
t) is the endowment at time t ≥ 1 of an individual.

In both models, the growth shocks are independently and identically distributed over time

and can take one of two values 0 < gL < gH . The probability that gt = gH is given by

π ∈ (0, 1) and the probability that gt = gL is given by 1− π. Finally, we assume that agents

have time and state separable logarithmic utility over consumption streams:

∞∑
t=0

∑
ht

βtπt(h
t) log(ct(h

t)),

where πt(h
t) is the probability as of time t = 0 that history ht is realized in period t ≥ 1 for

a particular individual.

The only difference between the two models is the following. In the first model, the

endowment growth shocks are aggregate, in the sense that all individuals experience the

same history ht of growth rate shocks up through time t for all t ≥ 1. Thus, aggregate and

individual endowments are the same:

Yt(h
t) = yt(h

t), in the first model,

where Yt(h
t) is the aggregate endowment at time t ≥ 1. In the second model, the individ-

uals each experience idiosyncratic endowment growth shocks, implying that the aggregate

endowment at time t is deterministic and given by

Yt =
∑
ht

πt(h
t)yt(h

t), in the second model.

1



1. (1pt) For a given individual, how many different histories are possible in period 4?

What is π4(y0, gL, gL, gH , gH) in terms of the parameter π? What is y4(y0, gL, gL, gH , gH)?

2. (1pt) This question studies individual and aggregate endowment growth in the two

models.

(a) (0.5pt) As a function of the parameters π, gL, gH , calculate

E
[
log
(
yt+1(h

t+1)
)
− log

(
yt(h

t)
)
|ht
]

V
[
log
(
yt+1(h

t+1)
)
− log

(
yt(h

t)
)
|ht
]
,

the expectation and the variance of the growth rate of a individual’s endowment

from t to t+ 1. Explain why this expectation and variance are the same in both

models.

(b) (0.5pt) As a function of the parameters π, gL, gH , calculate

E
[
log
(
Yt+1(h

t+1)
)
− log

(
Yt(h

t)
)
|ht
]

V
[
log
(
Yt+1(h

t+1)
)
− log

(
Yt(h

t)
)
|ht
]
,

the expectation and the variance of the growth rate of the aggregate endowment

from t to t + 1. Explain why this expectation and variance are different in both

models.

3. (1pt) Feasibility in the two models.

(a) (0.5pt) In the first model, what condition must an allocation {ct(ht)}∞t=0 satisfy

to be feasible.

(b) (0.5pt )In the second model, what condition must an allocation {ct(ht)}∞t=0 satisfy

to be feasible.

4. (3pt) In the first model, individuals have access to trading shares of the aggregate

endowment and a one-period risk free bond. We assume that at the start of time

t = 0, individuals have neither shares nor the risk free bond. Let {st(ht)} denote the

shares of the aggregate endowment and let {bt(ht)} denote the corresponding quantity

of risk free bonds that an individual purchases in period t following history ht. For

simplicity, we assume that individuals face borrowing and short-selling constraint that
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never bind in equilibrium. Let {pt(ht)} denote the prices of shares of the aggregate

endowment and {qt(ht)} the prices of one-period risk free bonds. We can write the

sequence of budget constraints for an individual in this first model for t ≥ 1 as

ct(h
t) + qt(h

t)bt(h
t) + pt(h

t)st(h
t) = yt(h

t) + bt−1(h
t−1) + (yt(h

t) + pt(h
t))st−1(h

t−1),

where s−1 = b−1 = 0, and where we do not explicitly state the borrowing and short-

selling constraints since they do not bind.

(a) (1pt) State the individual optimization problem and derive its first order condi-

tions (Euler equations).

(b) (1pt) Keeping in mind that the aggregate endowment of risk-free bond and shares

of the aggregate endowment is zero, define an equilibrium.

(c) (0.5pt) In this first model, one can show that there is an equilibrium in which

ct(h
t) = yt(h

t) = Yt(h
t) at all dates and after all histories, in which asset holdings

st(h
t) = bt(h

t) = 0 at all dates and states, and in which the bond prices qt(h
t) are

all equal to a constant q and the share prices pt(h
t) are all equal to a constant times

aggregate output pyt(h
t). For this equilibirum, solve for q and p from your Euler

equations in the previous question as functions of the parameters β, π, gL, gH .

(d) (0.5pt) Denote the return on the risk free bond by Rf
t+1 = 1/qt(h

t) = 1/q. Denote

the realized return on a share of the aggregate endowment by

Rs
t+1(h

t+1) =
yt+1(h

t+1) + pt+1(h
t+1)

pt(ht)
=
yt+1(h

t+1)

yt(ht)

1 + p

p
.

Compute the equity risk premium given by

EtR
s
t+1 −R

f
t+1

as a function of the parameters β, π, gL, gH .

5. (3pt) Consider now the same asset markets but in the second model. Since there is no

aggregate uncertainty, the price of assets is now deterministic. We denote by pt the

price of a share to the aggregate endowment at time t, and by qt the price of a bond

at time t.

(a) (0.5pt) What are the differences between the individual optimization problem

in the first and the second model? Using your answer together with the work
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you have already done for question 4(a), state the first order conditions (Euler

equations) of the individual optimization problem in the second model.

(b) (0.5pt) Keeping in mind that the aggregate endowment of risk-free bond and

shares of the aggregate endowment is zero, define an equilibrium.

(c) (1pt) In this second model, one can show that there is an equilibrium in which

ct(h
t) = yt(h

t) at all dates and after all individual histories, in which asset holdings

bt(h
t) = st(h

t) = 0 at all dates and states, and in which the bond prices qt = q are

all equal to a constant q, and the stock price is equal to pt = pYt. Show that this

constant q is the same as you derived in question 5(c). Using the Euler equation,

derive a recursive equation for p.

(d) (1pt) Show that the equity premium is equal to zero and explain why.

6. (1pt) In the equilibrium with ct(h
t) = yt(h

t) in the first model, how does the cross

section (across individuals) dispersion of log consumption evolve over time? It it con-

stant? Does it grow over time? Explain why. In the equilibrium with ct(h
t) = yt(h

t)

in the section model, how does the cross section (across individuals) dispersion of log

consumption evolve over time? It it constant? Does it grow over time? Explain why.
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Part 3 [Split your time equally between the two questions.]

3.A International trade and the skill premium

In this question, we consider a specification of the Armington model in which each country produces

output using two labor types (high and low skilled labor) and intermediate inputs (materials).

Intermediate inputs are made of the same final good as consumption. That it, intermediate inputs

contain the same import content as consumption.

Output in country i is produced according to

Qi = Fi (Hi, Li,Mi) =
[(
AHiH

α
i M

1−α
i

) ρ−1
ρ + (ALiLi)

ρ−1
ρ

] ρ
ρ−1

,

where Hi and Li denote high- and low-skilled labor (in fixed supply) and Mi denotes the use of

intermediate input. The parameter ρ 6= 1 is the the elasticity of substitution between low-skilled

labor and the skilled-labor / materials composite.

The intermediate input is made of the same final good that is used for consumption. Specif-

ically, we assume that a final good is produced in each country j according to the Armington

aggregator,
(∑

i∈S q
σ−1
σ

ij

) σ
σ−1

, with σ > 1. Given this technology, competitive final good firms pur-

chase individual goods qij to produce the final good. The final good is then used for production

(Mj) and for consumption by households (Cj). Households derive utility from consumption of the

final good, u (Cj). The resource constraint for the final good in country j is given by

(∑
i∈S

q
σ−1
σ

ij

) σ
σ−1

= Mj + Cj.

The resource constraint for output produced in country i is

Qi =
∑
j

τijqij.

All markets are competitive. Each labor group earns the value of its marginal product:

wi = pii
∂Fi
∂Li

and si = pii
∂Fi
∂Hi

,

where pii is the output price in country i. We denote the price of the final good in country i by Pi.

1. (0.2 points) Write an expression for the skill premium in country i, si/wi, in terms of Li, Hi,

Mi and the productivity parameters.

2. (0.2 points) Suppose that there is an exogenous increase in the quantity of intermediate

inputs used in country i, Mi. Provide a condition on parameters such that the skill premium
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in country i rises. Provide intuition for your answer.

In the following questions, we endogenize the change in Mi in response to a move to autarky. Note

that the quantity Mi must satisfy the first order condition

Pi = pii
∂Fi
∂Mi

.

3. (0.3 points) Write an expression for the relative price pii/Pi in terms of the domestic share

of gross output, λii,

λii ≡
piiqii

Pi (Ci +Mi)
,

and other model parameters.

4. (0.3 points) Suppose that, starting in a trade equilibrium in which λii < 1, country i moves

to autarky in which τij = ∞ for j 6= i. All other parameters remain unchanged. What

is the impact of this move to autarky on country i’s skill premium? You do not need to

fully characterize the solution analytically, but you need to show what equations you use to

obtrain your answer.

3.B Inflation dynamics

Consider the following log-linear model of price setting and price level dynamics:

p̄t = (1− βθ)
∑∞

j=0
(βθ)jEtp̃t+j,

p̃t+j = αpt + (1− α)mt,

pt = θpt−1 + (1− θ)p̄t,

∆mt = ρ∆mt−1 + εt.

(i) Explain each equation. What is the role of θ and α? Why is mt a measure of aggregate

demand?

(ii) Derive the Phillips curve, πt = βEtπt+1 + λ(mt − pt), where πt = ∆pt. What is the value of

λ and how does it depend on θ and α, and why? Why is (mt− pt) a measure of output gap?

(iii) For α = ρ = 0, solve for the dynamics of inflation πt and reset-price inflation p̄t = ∆p̄t. What

processes do these two series follow? If there is a one-time permanent expansion in aggregate

demand mt, could this model account for persistent inflation? persistent reset-price inflation?

(iv) Redo part (iii) for ρ > 0. How do your answers change? What if instead of ρ > 0, there is

α > 0? What are the likely source of persistent reset-price inflation?
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