UCLA

Department of Economics
Ph. D. Preliminary Exam Micro-Economic Theory
(SPRING 2020)

1. Choice by Satisficing: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ be a set of N goods and \mathcal{B} be the collection of all non-empty subsets of X. There is a decision maker (DM) whose utility function is given by $u: X \rightarrow \Re$. Assume that this DM has a strict preference on X, so u assigns a different number to different goods.

DM is not a utility maximizer. DM has a reference utility level u^{*}. Given a problem $B=\left\{x_{i(1)}, \ldots, x_{i(|B|)}\right\}$, where $i(k)$ is the k th smallest index within B (for example $x_{i(1)}=x_{2}$ for $B=\left\{x_{2}, x_{3}, x_{6}\right\}$), DM follows the following decision procedure to make a choice.

- Step 1: If $u\left(x_{i(1)}\right) \geq u^{*}$, then DM chooses $x_{i(1)}$. If $u\left(x_{i(1)}\right)<u^{*}$, then go to Step 2.
- Step k : If $u\left(x_{i(k)}\right) \geq u^{*}$, then DM chooses $x_{i(k)}$. If $u\left(x_{i(k)}\right)<u^{*}$, then go to Step $k+1$.
- Step $|B|$: DM chooses $x_{i(|B|)}$ (the good with the largest index in B).

Given $u: X \rightarrow \Re$ and u^{*}, the above procedure generates a choice function \tilde{C} on \mathcal{B} given by $\tilde{C}(B)=x_{j}$, where $j=\arg \min \left\{i: x_{i} \in B, u\left(x_{i}\right) \geq u^{*}\right\}$ or, if this set is empty, $j=\arg \max \left\{i: x_{i} \in B\right\}$.

Answer the following questions.
(a) Suppose that $B=\left\{x_{2}, x_{3}, x_{5}\right\}$ and $u\left(x_{3}\right)>u\left(x_{5}\right)>u^{*}>u\left(x_{2}\right)$. Which good would this DM choose from B ?
(b) Prove that \tilde{C} satisfies WARP (Weak Axiom of Revealed Preference).
(c) Is there any complete and transitive preference \succeq on X such that $\tilde{C}=C_{\succeq}$ on \mathcal{B} ? If so, find such a preference. If not, prove that there is no such preference.

For the next question, consider a DM with the same utility function u and a decreasing sequence of reference levels $u_{1}^{*}>u_{2}^{*}>\ldots>u_{N}^{*}$, who follows the following decision procedure:

- Step 1: If $u\left(x_{i(1)}\right) \geq u_{1}^{*}$, then DM chooses $x_{i(1)}$. If $u\left(x_{i(1)}\right)<u_{1}^{*}$, then go to Step 2 .
- Step 2: If $\max \left\{u\left(x_{i(1)}\right), u\left(x_{i(2)}\right)\right\} \geq u_{2}^{*}$, then DM chooses the better one from $x_{i(1)}$ and $x_{i(2)}$ (DM gets impatient and lowers the standard). Otherwise, go to Step 3.
- Step k : If $\max \left\{u\left(x_{i(1)}\right), \cdots, u\left(x_{i(k)}\right)\right\} \geq u_{k}^{*}$, then DM chooses $x_{j} \in B$, where $u\left(x_{j}\right)=\max \left\{u\left(x_{i(1)}\right), \cdots, u\left(x_{i(k)}\right)\right\}$. Otherwise, go to Step $k+1$.
- Step $|B|$: DM chooses x_{j} where $x_{j}=\arg \max _{x_{i} \in B} u\left(x_{i}\right)$.
(d) The above procedure defines a different choice function \widehat{C} on \mathcal{B}. Show by an example that \widehat{C} does not satisfy WARP.

2. Common Value Auction: Consider a common value first price auction for a single object, with two bidders. The signals space is $S=[0,1] \times[0,1]$; signals are uniformly distributed on S. If Nature draws the signal $\left(s_{1}, s_{2}\right)$ then Bidder 1 learns s_{1} and Bidder 2 learns s_{2} and the true common value of the object is $s_{1}+s_{2}$.

You are Bidder 1.
(a) If you receive the signal s_{1}, show that your expected value conditional on having the higher signal is $(3 / 2) s_{1}$.
(b) Suppose Bidder 2 follows the strategy of bidding half of his expected value conditional on having the higher signal; i.e. he follows the strategy $B_{2}^{*}\left(s_{2}\right)=(3 / 4) s_{2}$. What is your best response B_{1}^{*} to B_{2}^{*} ?
(c) Is the pair $\left(B_{1}^{*}, B_{2}^{*}\right)$ a (Bayesian) Nash Equilibrium?
(d) Find a symmetric Bayesian Nash Equilibium; i.e. a strategy/function B such that (B, B) is a (Bayesian) Nash Equilibrium.
3. Assembling Venture Capital: An entrepreneur has a project that costs I and yields return $I+A$, but she has no money. The required investment $I \sim F[0, \bar{I}]$ is a random variable and initially unknown to both parties. An investor has money x that it can invest in the project.

The game is as follows. First, the entrepreneur offers return r to the investor. Second, the investor chooses whether to accept the contract $(y=1)$ or reject the contract $(y=0)$. If it accepts, it invests x into the project. ${ }^{1}$ If it rejects, it gets $x(1+\theta)$, where $\theta>0$ measures the opportunity cost of investment. Third, the required investment I is publicly realized.

Payoffs are as follows. If the agent invests and $x \geq I$, the project succeeds and the investor gets $(1+r) x$. If $x<I$, the investor gets its money back, x. In expectation, if the investor accepts the contract, it gets profit

$$
\Pi(x)=(1+r) x F(x)+x(1-F(x))
$$

The entrepreneur gets

$$
U(x)=F(x)(A-r x)
$$

Since x is fixed, she thus wishes to minimize the cost of attracting the investment.
(a) The entrepreneur chooses the return r to maximize her utility subject to the investor accepting the contract (i.e. the entrepreneur has the bargaining power). What is the optimal return r ? Given the optimal r, what is the entrepreneur's utility?

Now, suppose that there are two investors with funds x_{1} and x_{2}, where $x_{1}>x_{2}$. The game is as follows. First, the entrepreneur offers return r_{i} to investor $i \in\{1,2\}$. Second, the investors simultaneously choose whether to accept the contract ($y_{i}=1$) or reject the contract ($y_{i}=0$). If i accepts, it invests x_{i} into the project. Third, the required investment I is publicly realized. If the money raised exceeds the required investment, $x_{1} y_{1}+x_{2} y_{2} \geq I$, the project succeeds and an investor gets $\left(1+r_{i}\right) x_{i}$. Otherwise, an investor gets its money back, x_{i}. In expectation, if investor i accepts the contract, it gets profit

$$
\Pi_{i}\left(x_{i}\right)=\left(1+r_{i}\right) x_{i} F\left(x_{i}+x_{j} y_{j}\right)+x_{i}\left(1-F\left(x_{i}+x_{j} y_{j}\right)\right)
$$

for $j \neq i$. As above, the opportunity cost of investing is $(1+\theta) x_{i}$. Meanwhile, the entrepreneur then wishes to minimize the cost of attracting the investment.
(b) The entrepreneur chooses the return r_{i} for $i \in\{1,2\}$. Suppose we want $\left(y_{1}, y_{2}\right)=(1,1)$ to be a Nash Equilibrium of the investment game. What are the optimal interest rates (r_{1}, r_{2}) ? Comparing this with part (a) how does this addition of the second agent affect the return?
(c) The entrepreneur chooses a common return r. Suppose we want $\left(y_{1}, y_{2}\right)=(1,1)$ to be the unique Nash Equilibrium of the investment game. What is the optimal r ?
(d) The entrepreneur chooses the return r_{i} for $i \in\{1,2\}$. Suppose we want $\left(y_{1}, y_{2}\right)=(1,1)$ to be the unique Nash Equilibrium of the investment game. Suppose that $1 / F(x)$ is convex. ${ }^{2}$ What are the optimal returns, $\left(r_{1}, r_{2}\right)$? Which investor gets the better return?

[^0]
[^0]: ${ }^{1}$ Throughout, we assume it's optimal for the investor(s) to invest all of their money. This is optimal if returns A are high, or wealth x is small.
 ${ }^{2}$ Useful fact: If $\phi(x)$ is convex then $\left[\phi\left(x_{1}\right) x_{1}-\phi\left(x_{2}\right) x_{2}\right] \leq \phi\left(x_{1}+x_{2}\right)\left[x_{1}-x_{2}\right]$ for $x_{1}>x_{2}$.

