FIRST YEAR QUANTITATIVE COMP EXAM SPRING, 2012

INSTRUCTION: THERE ARE THREE PARTS. ANSWER EVERY QUESTION IN EVERY PART.

Part I - 203A

Question I-1

A random variable X is distributed with the marginal density:

$$f_X(x) = \begin{cases} 2(1-x) & if \quad 0 < x < 1 \\ 0 & otherwise \end{cases}$$

The conditional cumulative distribution function of another random variable Y given X is

$$F_{Y|X=x}(y) = \begin{cases} 0 & if & y < x \\ \frac{y-x}{1-x} & if & x \le y < 1 \\ 1 & if & y \ge 1 \end{cases}$$

- 1. Calculate the expectation of the random vector (Y, X).
- 2. Calculate the covariance of X and Y. Are X and Y independently distributed? Explain.
- 3. Calculate the probability that $X \in [.5, 1]$ conditional on Y = .75
- 4. Let Z = Y X. Calculate the density of (Z, X).

Question I-2

An observable random variable Y is determined by an unobservable random variable α and an unobservable random variable ε , according to the model

$$Y = \begin{cases} 1 & if \quad \beta \ \alpha + \varepsilon > 0 \\ 0 & otherwise \end{cases}$$

where β is a parameter of unknown value. The marginal density of the random variable ε is known to be $N(\mu_{\varepsilon}, \sigma_{\varepsilon}^2)$, for unknown values of μ_{ε} and σ_{ε}^2 . The unobservable random variable α is known to be distributed $N(\mu_0, \sigma_0^2)$ when Z = 0 and $N(\mu_1, \sigma_1^2)$ when Z = 1, for unknown values of μ_0, μ_1, σ_0^2 , and σ_1^2 . The random variable Z is observable. Denote the probability that Z = 0 by the parameter p_0 and the probability that Z = 1 by the parameter p_1 , where $p_0 + p_1 = 1$. Assume that (α, Z) and ε are independently distributed.

- 1. Obtain an expression for the probability that Y = 1 conditional on Z = 0 in terms of the unknown parameters.
- 2. Obtain an expression for the (marginal) probability that Y = 1.
- 3. Are p_0 and p_1 identified? Provide a proof for your answer.
- 4. Are μ_{ε} and σ_{ε}^2 identified? Provide a proof for your answer.

Suppose next that the values of (μ_0, σ_0^2) and $(\mu_\varepsilon, \sigma_\varepsilon^2)$ are known, with $\mu_0 = 0$ and $\mu_\varepsilon \neq 0$.

- 5. Determine what parameters are identified. Provide proofs.
- 6. For the parameters that are not identified, can you provide bounds for their values? If your answer is YES, determine those bounds. If your answer is NO, explain.

Question I-3

Consider the following model:

$$Y = \begin{cases} 1 & if \quad \beta \ \alpha + X + \varepsilon > 0 \\ 0 & otherwise \end{cases}$$

where the random variables Y, X, and Z are observable, the random variables α and ε are unobservable, and β is a parameter of unknown value. As in Question 2, the distribution of α depends on the value of Z. The random variable Z attains the value 0 with probability p_0 and the value 1 with probability p_1 , where $p_0 + p_1 = 1$. Assume, further, that *(i)* the support of the continuous random variable X is R, *(ii)* the random variable ε is distributed N(1, 4), and *(iii)* (α, Z) , X, and ε are mutually independent.

- 1. Suppose first that the distribution of α when Z = 0 is N(0, 16) and the distribution of α when Z = 1 is $N(\mu_1, \sigma_1^2)$, where the values of μ_1 and σ_1^2 , as well as the values of p_0 and p_1 are unknown.
 - (a) Determine the identified parameters. Provide proofs of your claims.
 - (b) Given i.i.d. observations $\{Y^i, X^i, Z^i\}_{i=1}^N$, provide consistent estimators for the identified parameters.
 - (c) Prove that your proposed estimators in 1.b are consistent. What can you say regarding the asymptotic distribution of your estimators?

- 2. Suppose now that the distribution $F_{\alpha|Z=1}$ of α when Z = 1 and the distribution $F_{\alpha|Z=0}$ of α when Z = 0 do not necessarily belong to a parametric family. They are only known to be strictly increasing and continuous functions. It is however still known that $Var(\alpha|Z=0) = 16$. Answer the following questions and provide proofs.
 - (a) Is β identified?
 - (b) Is the distribution of $(\alpha + \varepsilon)$ identified?
 - (c) Are $F_{\alpha|Z=1}$ and $F_{\alpha|Z=0}$ identified?
 - (d) Is the (marginal) distribution of α identified?

Part II - 203B

Question II-1

Suppose that $X = (X_1, \ldots, X_n)'$ is such that X_i are iid $N(\theta_1, \theta_2)$. Compute the information for $\theta = (\theta_1, \theta_2)$ based on X. Let

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Prove that s^2 is unbiased for θ_2 . Prove that the finite sample variance of s^2 is strictly larger than the Cramer-Rao bound. (Let n = 2 when you make this comparison.) Derive the asymptotic distribution of $\sqrt{n} (s^2 - \theta_2)$ as $n \to \infty$, and show that the asymptotic variance of $\sqrt{n} (s^2 - \theta_2)$ is identical to the inverse of the Fisher information.

Question II-2

Suppose that

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \varepsilon_i$$

such that ε_i, x_{i1} , and x_{i2} are independent of each other with the common distribution N(0, 1). We assume that every variable is a scalar. Consider two estimators of β_1 . The first estimator $\tilde{\beta}_1$ is obtained by regressing y_i on x_{i1} :

$$\widetilde{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i1} y_{i}}{\sum_{i=1}^{n} x_{i1}^{2}}$$

The second estimator $\hat{\beta}_1$ is the first component when y_i is regressed on x_{i1} and x_{i2} :

$$\begin{bmatrix} \widehat{\beta}_1\\ \widehat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_{i1}^2 & \sum_{i=1}^n x_{i1} x_{i2}\\ \sum_{i=1}^n x_{i1} x_{i2} & \sum_{i=1}^n x_{i2}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n x_{i1} y_i\\ \sum_{i=1}^n x_{i2} y_i \end{bmatrix}$$

Compute the asymptotic variances of $\sqrt{n} \left(\tilde{\beta}_1 - \beta_1 \right)$ and $\sqrt{n} \left(\hat{\beta}_1 - \beta_1 \right)$. Is it possible to determine which one is larger? If so, which one is more efficient?

Question II-3

Suppose that

$$y_i = x_i \beta_i + \varepsilon_i$$

where ε_i, x_i , and β_i are independent of each other. Note that β_i is a random variable. We assume that $(y_i, x_i)' \ i = 1, 2, ..., n$ are observed, and they are iid. Let $\beta = E[\beta_i]$, and propose a consistent estimator of β . Prove why your estimator is consistent. Derive the asymptotic variance of $\sqrt{n} (\hat{\beta} - \beta)$, where $\hat{\beta}$ denotes your proposed estimator.

Part III - 203C

Question III-1

Suppose that $X_1, ..., X_n$ is an *iid* sample from a distribution having density function of the form

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1} & \text{if } x \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$

.

Show that a best critical region for testing $H_0: \theta = 1$ against $H_1: \theta = 2$ is

$$C = \left\{ (X_1, ..., X_n) : c \le \prod_{i=1}^n X_i \right\}$$

Question III-2

Suppose that

$$y_t = \alpha y_{t-1} + u_t$$
$$u_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

where $\varepsilon_t \sim iid \ (0, \sigma_{\varepsilon}^2)$.

- 1. Suppose that $|\alpha| < 1$. Is the process $\{y_t\}$ covariance stationary? Derive the autocovariance function of $\{y_t\}$.
- 2. Under the assumption $|\alpha| < 1$, is the OLS estimate $\hat{\alpha}_n$ defined as

$$\widehat{\alpha}_n = \frac{\sum_{t=1}^n y_t y_{t-1}}{\sum_{t=1}^n y_{t-1}^2}$$
(1)

a consistent estimator of α ?

3. Suppose $|\alpha| < 1$ still hold. Now we estimate α by using the Instrumental Variable (IV) method, with y_{t-2} being the instrument for y_{t-1} . The IV estimator $\widehat{\alpha}_n^{IV}$ is defined as

$$\widehat{\alpha}_{n}^{IV} = \frac{\sum_{t=2}^{n} y_{t} y_{t-2}}{\sum_{t=2}^{n} y_{t-1} y_{t-2}}.$$

Is the IV estimator $\hat{\alpha}_n^{IV}$ a consistent estimator of α ? Derive its limiting distribution.

- 4. Now suppose that $\alpha = 1$, is the OLS estimate $\widehat{\alpha}_n$ defined above a consistent estimator of α ?
- 5. Derive the limiting distribution of the OLS estimate $\hat{\alpha}_n$ under $\alpha = 1$.

Question III-3

Suppose that

$$Y_t = X_t\beta + u_t + c\sum_{s=0}^{t-1} u_s$$

where $u_t \sim iid (0, 1)$, c and β are some unknown constants and

$$X_t = X_{t-1} + \varepsilon_t$$

where ε_t is an *iid* (0,1) sequence independent of u_s for all t and s, and $X_0 = 0$. You run a regression of Y_t on X_t and get the following OLS estimate

$$\widehat{\beta}_n = \frac{\sum_{t=1}^n X_t Y_t}{\sum_{t=1}^n X_t^2}.$$

- 1. Suppose that $c \neq 0$. Is $\hat{\beta}_n$ a consistent estimate of β ?
- 2. Suppose that c = 0. Is $\hat{\beta}_n$ a consistent estimate of β ? Derive its limiting distribution.
- 3. Using the results in (1) and (2), construct a statistic for testing $H_0: c = 0$ against $H_1: c \neq 0$. Why is your test consistent?
- 4. Let $\Delta X_t = X_t X_{t-1}$ and $\Delta Y_t = Y_t Y_{t-1}$. What's the limiting distribution of the following estimate?

$$\widehat{\beta}_n^* = \frac{\sum_{t=2}^n \Delta X_t \Delta Y_t}{\sum_{t=2}^n \Delta X_t^2}$$

5. Which estimate, i.e. $\hat{\beta}_n$ or $\hat{\beta}_n^*$, do you prefer? Justify your choice (Hint: your answer may depend on the value of c).