UCLA Department of Economics

First Year Core Examination in Quantitative Methods

Spring 2008

This is a 4 hour closed book/closed notes exam.

Answer ALL questions in Parts I, II, and III-Use a separate answer book for each part.

Calculators and other electronic devices are not allowed.

GOOD LUCK!

Quantitative Methods Comprehensive Examination

Directions: Please answer each of the three parts in a separate bluebook. You have four hours to complete the exam. Calculators and other electronic devices are not allowed.

Part I (based on Ec203A)

Question 1: The joint density of random variables X and Y is given by

$$f_{Y,X}\left(y,x
ight) = \left\{ egin{array}{cccc} y & & if & & 0 < y < 1, & 0 < x < 2 \ & & & & \\ 0 & & & & otherwise \end{array}
ight\}$$

- (a) Are X and Y independently distributed? Explain.
- (b) Calculate $Pr(X + Y > 2 \mid 0 < Y < .5)$.

Question 2: Suppose that $X_1, ..., X_N$ are independent random variables, and each X_i is distributed binomial (m_i, p) . That is, for $r = 0, ..., m_i$

$$\Pr(X_i = r) = \begin{pmatrix} m_i \\ r \end{pmatrix} p^r (1-p)^{m_i-r}$$

(a) What is the moment generating function of X_i ? Explain.

Let
$$Y = \sum_{i=1}^{N} X_i$$
.

- (b) What is the distribution of Y? Explain.
- (c) What is the expectation of Y? Explain.

(You may need to use the fact that $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.)

Question 3: Consider again the situation in Question 2, where $X_1, ..., X_N$ are independent random variables, but assume now that each X_i is distributed binomial(m, p). In other words, assume that $m_i = m$ for all i.

- (a) Describe how to use the observations $X_1, ..., X_N$ to derive a Maximum Likelihood Estimator, \widehat{p} , for p.
 - (b) What is the asymptotic distribution of $\sqrt{N}(\widehat{p}-p)$? Explain.
 - (c) What is the asymptotic distribution of $\sqrt{N}\left(\hat{p}^2-p^2\right)$? Explain.
- (d) Describe how you could use \widehat{p} to test the hypothesis $H_0: p=.5$, versus the alternative $H_1: p \neq .5$, using a significance level α .

Part II (based on Ec203B)

PROBLEM 1:

Write the log-likelihood for n i.i.d. observations on (x_i, y_i) from the generalized normal linear regression model,

$$y_i|x_i \sim N\left(x_i\beta, \exp\left(x_i\gamma\right)\right)$$

where β and γ are unknown parameters.

- (i) Derive the ML estimator of β . Is it unbiased? Is it efficient? Show that it is consistent and derive its asymptotic distribution. (Hint: The estimator cannot be solved for explicitly)
- (ii) Describe the GLS estimator of β (assuming γ is known). Is is unbiased? Is it efficient? Describe the conditions under which it is consistent and derive its asymptotic distribution. Which estimator would you prefer in large samples and why?
- (iii) Describe the feasible GLS estimator when γ is unknown. Is it unbiased? Is it efficient? Discuss its consistency and its asymptotic distribution.
 - (iv) Describe the likelihood ratio, Wald and Lagrange Multiplier test for heteroskedasticity.

PROBLEM 2:

Suppose that your true model is

$$y_i = x_i \beta + \varepsilon_i$$

but you estimate the model

$$y_i = x_i \beta + z_i \gamma + v_i$$

where all you assume is that ε_i and v_i are uncorrelated with x_i and z_i . Derive the asymtotic properties of the OLS estimators of β in the true and the estimated model under random sampling. You may assume that all relevant moments exist.

Part III (based on Ec203C):

1. Consider the binary choice model

$$y_i^* = x_i' \beta_0 + \varepsilon_i,$$

where $\varepsilon_i|x_i \sim N(0, \sigma_{\varepsilon}^2)$, for i = 1, ..., n. Let

$$y_i = \begin{cases} 1 & \text{if } y_i^* > 0, \\ 0 & \text{Otherwise.} \end{cases}$$

Let

$$x'_i = (1, x_{2i}, ..., x_{Ki}),$$

 $\beta'_0 = (1, \beta_2, ..., \beta_K)$

- (a) Compute $Pr(y_i = 1|x_i)$.
- (b) Determine which of the model's parameters are identified. Justify your answer.
- (c) Obtain the maximum likelihood estimator for β_0 , say $\widehat{\beta}_n$.
- (d) Let $l(\beta)$ denote the log-likelihood function for β . Show that

$$E\left[\frac{\partial l\left(\beta\right)}{\partial\beta}\frac{\partial l\left(\beta\right)}{\partial\beta'}\right] = -E\left[\frac{\partial^{2}l\left(\beta\right)}{\partial\beta\partial\beta'}\right].$$

- (e) Provide the asymptotic distribution for $\widehat{\beta}_n$ using the property estiblished in (d).
- (f) Provide an estimate for the average marginal effect of x_{2i} on the probability that $y_i = 1$, conditional on x_i . Provide an estimate for the standard error of this marginal effect.
- 2. Consider the neo-classical regression model

$$y_i = x_i' \beta_0 + w_i^* \gamma_0 + u_i$$
 $(i = 1, ..., n)$

where β_0 is a $k \times 1$ vector of parameters, and γ_0 is a $p \times 1$ vector of parameters. Suppose that

$$E[x_i u_i] = 0,$$

$$w_i = w_i^* + v_i,$$

with

$$E[v_iu_i]=0.$$