Quantitative Methods Comprehensive Examination

Please answer each of the three parts in a separate bluebook. You have four hours to complete the exam. Calculators and other electronic devices are not allowed.

Part I (based on Ec203A)

Question 1: Let X have pdf $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, with support $-\infty \le x \le \infty$. Find the support and the pdf of $Y = X^2$.

Question 2: Let $\widehat{\theta}_n$ be an estimator of θ . Show that, if (1) $\lim_{n\to\infty} Var(\widehat{\theta}_n) = 0$ and (2) $\lim_{n\to\infty} Bias(\widehat{\theta}_n) = 0$ then $\widehat{\theta}_n$ is a consistent estimator of θ (i.e., $\lim_{n\to\infty} P(|\widehat{\theta}_n - \theta| \ge \varepsilon) = 0$). (Hint: use Chebyshev's inequality: $P(g(X) \ge r) \le \frac{Eg(X)}{r}$).

Question 3: Let $X_1, ..., X_n$ be iid Bernoulli(p). Find the MLE of p. (Recall that, if $X \sim Bernoulli(p)$, the pdf is $f(x) = p^x(1-p)^{1-x}$).

Question 4: Let $X_1, ..., X_n$ be iid $N(\theta, \sigma^2)$, σ^2 known. Use the Neyman-Pearson lemma to find the uniformly most powerful test for $H_0: \theta = 1$ against $H_1: \theta = 0$, for a significance level $\alpha = 0.05$.

Part II (based on Ec203B)

Question 1: Consider the linear regression model given by

$$y_i = x_i \beta_0 + \varepsilon_i$$

where $E\left(\varepsilon_{i}|x_{i}\right)=0$ and $E\left(\varepsilon_{i}^{2}|x_{i}\right)=\gamma_{0}x_{i}^{2}$ where x_{i} is a scalar random variable and γ_{0} is an unknown parameter. Make any additional assumptions you deem necessary to prove your claims.

- (a) Consider the following statements: (a) The OLS estimator is unbiased. (b) The OLS estimator is consistent. (c) The OLS estimator is efficient. Are they right or wrong? Prove your claims.
- (b) Derive the asymptotic distribution of the OLS estimator and propose two consistent estimators of its asymptotic variance. Prove your claims.
- (c) Consider the WLS estimator of β_0 . Is it unbiased? Is it consistent? Derive its asymptotic distribution and propose a consistent estimator of its asymptotic variance. Prove your claims.

Question 2:

For each one of the following claims show whether they are true or false.

- (a) The OLS residuals are uncorrelated with the predicted values in the classical linear regression model.
- (b) The R^2 of a k-variate regression does not change if we add to the dependent variable a constant and/or if we multiply the dependent variable by a constant.
- (c) For the k-variate regression model, $y = X\beta + \varepsilon$, the fit as measured by R^2 does not change if we transform the X matrix by post-multiplying it by a $k \times k$ non-singular matrix.
- (d) The Wald test statistic and the F statistic for testing a set of p linear restrictions on the coefficients of a K- variate normal linear regression model coincide.

Part III (based on Ec203C)

Question 1: True/Questionable/False?

- (i) When instruments are weak, an applied researcher should use OLS because the 2SLS estimator can be extremely biased.
- (ii) In a linear endogenous regression model the asymptotic variance covariance matrix of the 2SLS estimator does not depend on the number of instruments used as long as the model is identified.
- (iii) In a linear regression model with iid data, HAC estimation is consistent, only if the bandwidth S_T grows to infinity when $T \to \infty$.
- (iv) When instruments are weak, an applied researcher doing inference based on inverting a Wald statistic may obtain misleadingly narrow confidence intervals.
- (v) When testing overidentifying restrictions, a large value of the *J*-test is not necessarily evidence against the null hypothesis of instrument exogeneity due to the inconsistency of the test against certain alternatives.
- (vi) With an MSE loss function, the optimal linear forecast of Y_t based on $(Y_{t-1}, ..., Y_1)$ does not depend on third and higher moments of the data only if the data is Gaussian.

Question 2: Take the linear model

$$y_i = x_i \beta + e_i,$$

$$E(e_i|x_i) = 0,$$

where x_i and β are 1x1.

- (a) Show that $E(x_ie_i) = 0$ and $E(x_i^2e_i) = 0$.
- (b) Is $z_i = (x_i, x_i^2)$ a valid instrumental variable for estimation of β ?
- (c) Define the 2SLS estimator of β , using z_i as an instrument for x_i . How does this differ from OLS?
- (d) Find the efficient GMM estimator of β based on the moment condition

$$E(z_i(y_i - x_i\beta)) = 0.$$

Does this differ from 2SLS and/or OLS?

Question 3: Suppose that an MA(2) model is estimated by conditional MLE when the second moving average parameter, θ_2 , is actually equal to zero. Derive an expression for the relative efficiency of the resulting estimator of θ_1 as compared with the estimator obtained from an MA(1) model.