Spring 2005 UCLA Department of Economics Written Qualifying Examination in Quantitative Methods

Instructions:

Answer ALL questions in Parts I, II, and III

Use a separate answer book for each Part.

You have four hours to complete the exam.

Calculators and other electronic devices are not allowed.

1 Part I

- 1. (10 pt.) Suppose that $Y_n \sim b(n, \pi/n)$. Prove that Y_n converges in distribution to a Poisson distribution with mean equal to π . You may use the fact that the MGF M(t) of Poisson with mean m is equal to $\exp[m(e^t 1)]$.
- 2. (10 pt.) Suppose that X_1, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$. Let

$$Y_{n} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right)^{2}} - 3$$

You are asked to characterize the asymptotic distribution of $\sqrt{n}Y_n$. For this purpose, prove the following:

(a) (1 pt.) Let

$$Z_i = \frac{X_i - \mu}{\sigma}.$$

Note that $Z_i \stackrel{i.i.d.}{\sim} N(0,1)$. Show that

$$Y_{n} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{4} - 3(\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2})^{2}}{(\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2})^{2}}$$

(b) (1 pt.) Prove that

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \left(Z_i - \overline{Z} \right)^2 \right)^2 = 1$$

You may use the fact that

$$\left(\frac{1}{n}\sum_{i=1}^{n} (Z_i - \overline{Z})^2\right)^2 = \left(\frac{1}{n}\sum_{i=1}^{n} Z_i^2 - \left(\frac{1}{n}\sum_{i=1}^{n} Z_i\right)^2\right)^2$$

(c) (2 pt.) Prove that

$$\sqrt{n} \left(\begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{4} \\ \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{3} \\ \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2} \\ \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2} \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right) \xrightarrow{d} N \left(0, \begin{bmatrix} 96 & 0 & 12 & 0 \\ 0 & 15 & 0 & 3 \\ 12 & 0 & 2 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix} \right)$$

You may use the fact that

$$E [Z_i^8] = 105$$

$$E [Z_i^7] = 0$$

$$E [Z_i^6] = 15$$

$$E [Z_i^5] = 0$$

$$E [Z_i^4] = 3$$

$$E [Z_i^3] = 0$$

$$E [Z_i^2] = 1$$

You may want to use the fact that, if X is a random vector, then

$$Var(X) = E[XX'] - E[X]E[X']$$

(d) (4 pt.) Show that

$$\frac{1}{\sqrt{n}} \left[\sum_{i=1}^{n} \left(Z_i - \overline{Z} \right)^4 - 3 \left(\frac{1}{n} \sum_{i=1}^{n} \left(Z_i - \overline{Z} \right)^2 \right)^2 \right] \stackrel{d}{\to} N \left(0, \omega \right)$$

for some ω . What is ω ? You may use the fact that

$$\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{4} - 3 \left(\frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2}\right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{4} - 4\overline{Z} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{3}\right) + 6\overline{Z}^{2} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right) - 4\overline{Z}^{3} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right) + \overline{Z}^{4}$$

$$-3 \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right)^{2} + 6\overline{Z}^{2} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right) - 3\overline{Z}^{4}$$

$$= \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{4} - 4\overline{Z} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{3}\right) + 12\overline{Z}^{2} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right) - 3 \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right)^{2} - 6\overline{Z}^{4}$$

$$= \frac{1}{n} \sum_{i=1}^{n} Z_{i}^{4} - 4 \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{3}\right) + 12 \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right)^{2} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right)$$

$$-3 \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}\right)^{2} - 6 \left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right)^{4}$$

(e) (1 pt.) Derive the asymptotic distribution of $\sqrt{n}Y_n$.

2 Part II

1. Consider the classical normal linear regression model

$$Y = X\beta + \varepsilon$$

where $\varepsilon|X \sim N\left(0, \sigma^2 I_n\right)$. Describe the Wald test for testing a set of p linear hypotheses on β of the form $H_0: \Gamma\beta = \gamma_0$ where Γ is a $p \times K$ full row rank matrix. Derive the sampling and asymptotic distribution of the test statistic.

2. Suppose you have n i.i.d. observations on (Y_i, X_i) from the logit model

$$\Pr(Y_i = 1|X_i) = \frac{exp(X_i\beta)}{1 + exp(X_i\beta)}$$

- (a) Describe the MLE of β and show that it is consistent and asymptotically normal. Discuss estimation of its asymptotic covariance matrix.
- (b) Provide (and justify) an alternative estimator that is as efficient asymptotically as the MLE. Show that it is consistent and asymptotically normal.
- (c) Provide an estimator of the marginal effect of a continuous regressor X_{ij} on the conditional probability of "success" and discuss how to construct a 95% confidence interval around your estimate.

Make sure to state all necessary conditions and theorems you use in your proofs.

3 Part III

- 1. True/Questionable/False? (No points are given for just stating true/questionable or false. The explanation is what counts.)
 - (a) In the scalar location model $y_i = \theta + u_i$ with $u_i \sim iid\ N(0, \sigma^2)$ there exists a threshold $\sigma_{TH}^2 < \infty$ such that OLS is more efficient than LAD if and only if $\sigma^2 \leq \sigma_{TH}^2$.
 - (b) The linear difference equation $y_t = \alpha y_{t-2} + u_t$ where $u_t \sim iid\ N(0, \sigma^2)$ has a causal stationary solution if $|\alpha| < 1$. (Note, y_t is not an AR(1) here.)
 - (c) A positive feature of the LM_{CUE} test of the simple full vector parameter hypothesis $H_0: \theta = \theta_0$ is that its null rejection probabilities are robust to the strength or weakness of the instruments. Therefore, the confidence region $\{\theta \in R^p; LM_{CUE}(\theta) \leq \chi_p^2(1-\alpha)\}$ has approximate coverage probability $1-\alpha$ for θ_0 even if instruments are weak. (Here $\chi_p^2(1-\alpha)$ denotes the $1-\alpha$ quantile of a chi-square distribution with p degrees of freedom.)
 - (d) Assume a central limit theorem applies to the stationary zero mean vector series v_t and we have $T^{-1/2} \sum_{t=1}^T v_t \to_d N(0,\Omega)$. Then, the estimator $T^{-1} \sum_{t,s=1}^T v_s v_t'$ is typically inconsistent for Ω .
 - (e) If $X_n = O_p(n^{\delta})$ for some $\delta > 0$ it can not be the case that $X_n = o_p(1)$.
- 2. Take the linear model $y_i = x_i \beta + e_i$, $E(e_i|x_i) = 0$, where x_i and β are scalars.
 - (a) Show that $E(e_i x_i) = 0$ and $E(e_i x_i^2) = 0$.
 - (b) Is $z_i = (x_i, x_i^2)$ a valid instrumental variable for estimation of β ?
 - (c) Write down the formula for the 2SLS estimator of β using z_i as an instrument for x_i (the formula of the 2SLS estimator can be written down even if instruments are invalid). Do 2SLS and OLS differ here?
 - (d) Find the efficient GMM estimator of β based on the moment condition $E(z_i(y_i x_i\beta)) = 0$. Does this differ from 2SLS and/or OLS?
 - (a) For a covariance stationary process Y_t derive a formula for the linear projection $\widehat{E}(Y_{t+1}|Y_t)$ of Y_{t+1} on a constant and Y_t in terms of $E(Y_t)$ and the covariances of Y_t at lag k=0 and 1. What does this formula boil down to in the case where Y_t is the AR(2) process $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + u_t$?
 - (b) Prove that there cannot be a stationary solution y_t for the scalar difference equation $y_t = y_{t-1} + \varepsilon_t$, where ε_t is white noise with zero mean and variance $\sigma^2 > 0$. You must not assume that $y_0 \equiv 0$ in your proof.