Quantitative Methods Comprehensive Examination

This is a four hour closed-book examination. There are three parts in this exam. Please answer **ALL** parts of the exam. Use separate exam book for each of the three sections.

Calculators, or any other electronic devices, are not allowed.

Part I.

- 1. Suppose that $X \sim N(\theta_1, \theta_2)$. Let $\theta \equiv (\theta_1, \theta_2)'$. Compute the Fisher Information for θ .
- 2. Let X_1, \ldots, X_n be i.i.d. with the following PDFs. In each case, find the asymptotic variance of $\sqrt{n} \left(\widehat{\theta}_{MLE} \theta \right)$
 - (a) $f(x;\theta) = \theta x^{\theta-1}$ for 0 < x < 1 and zero elsewhere
 - (b) $f(x;\theta) = (1/\theta) \exp(-x/\theta)$ for 0 < x and zero elsewhere
- 3. Let X_1, \ldots, X_{25} be i.i.d. $N(\mu, 1)$. We wish to test

$$H_0$$
 : $\mu = \mu_0$

$$H_1$$
 : $\mu = \mu_1$

for some $\mu_1 > \mu_0$. Derive the best test, i.e., the best critical region, at the 0.05 level.

4. Suppose that X_1, \ldots, X_n are *i.i.d.* random variables such that $X_i \sim N(\mu, 1)$. We would like to test $H_0: \mu = 0$ against $H_1: \mu > 0$. A friend of yours suggested a testing strategy where the null hypothesis is rejected if and only if

$$S \equiv \frac{1}{n} \sum_{i=1}^{n} 1 (X_i \ge 0) - \frac{1}{2} \ge \frac{1.96}{\sqrt{n}} \times \frac{1}{2}.$$

Here, $1(\cdot)$ is an indicator function such that

$$1(X_i \ge 0) \equiv \begin{cases} 1 & \text{if } X_i \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

What is the exact probability of Type I error of this test when n=4? What is the limit of the probability of Type I error as $n\to\infty$?

Part II.

1. Consider a heteroskedastic linear regression model

$$y_i = x_i \beta + \varepsilon_i$$

where $\{\varepsilon_i\}_{i=1}^n$ are independent and distributed as $N\left(0,z_i\alpha\right)$, β is a vector of unknown parameters, z_i is a vector of known constants and α is a vector of unknown parameters. Assume that all the appropriate assumptions hold so that the OLS estimator of β is consistent and asymptotically normal.

Propose an estimator of α , show that it is consistent and derive its asymptotic distribution. State all necessary assumptions and theorems.

2. Consider the simple linear regression model

$$y_i = a + x_i \beta + \varepsilon_i,$$

where $\{\varepsilon_i\}_{i=1}^n$ are independent and distributed as $N\left(0,\sigma^2\right)$, and α and β are scalar unknown parameters.

Show that the three familiar tests, Wald, Likelihood Ratio, and Lagrange Multiplier tests, for testing the hypothesis $\beta = 0$ take the form:

$$W = \frac{nr^2}{(1-r^2)}$$

$$LR = n \ln \left(\frac{1}{1-r^2}\right)$$

$$LM = nr^2$$

where r is the simple correlation coefficient between x and y.

Part III.

1. Consider the Neo Classical regression model

$$y_i = \beta' x_i + \gamma' w_i + u_i$$
 $(i = 1, \dots, n)$

where β is a $k \times 1$ vector of parameters, and γ is a $p \times 1$ vector of parameters. Also, for x_i we have

$$E[x_iu_i]=0$$

and for w_i we have

$$E[w_iu_i]\neq 0.$$

- (a) Can the coefficient vector β be consistently estimated by a least-squares regression? Demonstrate your answer as precisely as possible.
- (b) Suppose that $Cov(x_i, w_i') = 0$, and that X'W = 0, where $X = (x_1, \ldots, x_n)'$, and $W = (w_1, \ldots, w_n)'$. Suppose also that the vector $z_i' = (z_{1i}, \ldots, z_{li})$ (with l > p) is a proper instrument for $w_i' = (w_{1i}, \ldots, w_{pi})$, and let $Z = (z_1, \ldots, z_n)'$. None of the elements in z_i equal any of the elements in x_i . Compute the instrumental variable estimator for γ in a regression that includes both x and w.
- (c) Under the condition in (b), consider the following estimation procedure: (i) Estimate β from a regression of y on X; and (ii) Compute $\hat{y} = My$ (where $M = I X(X'X)^{-1}X'$) and estimate γ by computing the instrumental variable estimator from a regression of \hat{y} on w, using z as the instrumental variable for w.
- (d) Compare the estimators for γ from (b) and (c3). Explain the difference and/or the similarity.
- 2. Consider the binary choice model

$$y_i^* = x_i' \beta_0 + \varepsilon_i,$$

for i=1,...,n, where $\varepsilon_i|x_i\sim \text{i.i.d.}$ $G(\cdot)$, $G(\cdot)$ is independent of x_i and symmetric around zero.

$$y_i = \begin{cases} 1 & \text{if } y_i^* > 0, \\ 0 & \text{Otherwise.} \end{cases}$$

- (a) Compute $Pr(y_i = 1|x_i)$.
- (b) Demonstrate how to obtain the maximum likelihood estimator for β_0 , say $\hat{\beta}_n$.
- (c) Let $l(\beta)$ denote the log-likelihood function for β . Show that

$$E\left[\frac{\partial l\left(\beta_{0}\right)}{\partial \beta}\frac{\partial l\left(\beta_{0}\right)}{\partial \beta'}\right] = -E\left[\frac{\partial^{2}l\left(\beta_{0}\right)}{\partial \beta \partial \beta'}\right].$$

- (d) Provide the asymptotic distribution for $\hat{\beta}_n$ using the property established in (c).
- (e) Show how to test whether or not the marginal effect of x_{2i} on the probability that $y_i = 1$, conditional on x_i is of any significance. Justify your answer