UCLA Department of Economics
First Year Core Examination in
Quantitative Methods

Fall 2008

This is a 4 hour closed book/closed notes exam.
Answer ALL questions in Parts I, IL, and I1I-
Use a separate answer book for each part.
Calculators and other electronic devices are not allowed.

GOOD LUCK!
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Part I (based on Ec203A)

Question 1:

Let Xi,..., X5 be 7.4.d. random variables, each distributed U (61, 62), where 0; < 8. In other
words, for each i, the density, fx,, of X; is

ﬁ 0 <z <O
sz'(m):

0 otherwise

a. Show that the mean, y, and variance, o2, of X;, are given by u = (8; + ;) /2 and 0% =
(82 — 61)* /12

b. Provide consistent estimators for p and 62. Prove that they are consistent.

c. Use your estimators for u and o2 to derive consistent estimators, 51 and 52, for 81 and 6. ‘

Prove that your estimators are consistent.

d. Let
B Van (5.+9.) / (0. 7:)

where 0; and @2 are the estimators that you derived in (c). Suppose, in this subquestion only,

that £(X;) = 0. Derive the limiting distribution of B Justify your answer.

e. Develop a test for the hypothesis Hy : 81 + 89 = 5 versus the alternative H; : 61 + 65 < 5.
Justify your steps.

f. Assume now that E(X;) > 0. Develop an approximate 95% confidence interval for the value

of the parameter m = /(01 + 63).



Question 2:

Answer TRUE, FALSE, or UNCERTAIN, and justify.

1. Suppose that X and Y are independent random variables. Let Z = g(X,Y) where g is

continuous function. Then, Z and X are independently distributed.

2. Suppose that X and Y are random variables such that for some function h, Y = h(X). If

Y is continuous, X may be either discrete or continuous, but, if Y is discrete, X must be discrete.

3. Suppose that the distribution of X, conditional on Z, is normal with mean 2 Z and variance
02, and that Z is normal with mean 0 and variance w?. Then, the unconditional distribution of X

is normal with mean zero and variance o2 + w?.
4. Suppose that the random vector (X,Z) and the random variable Y are independently

distributed. Then, for all z,y, 2, the conditional joint density of (X,Y") given Z and the conditional
densities of X given Z and Y given Z, satisfy

Fxviz==(2,Y) = fx12=2(2) fyiz=-(v)
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Part II (based on Ec203B)

PROBLEM 1:

TRUE, FALSE. EXPLAIN

(a) Suppose that the true model is ¥; = X;8 + ¢; where X; is a scalar explanatory variable
independent of &;. Instead you run the OLS regression X; = Y;6 + u; and use 1/ 5 as an estimator ‘
of 8. The proposed estimator is consistent for 3.

(b) The R? from an OLS regression is the square of the simple correlation between the regres- '

sand and the predicted value.

PROBLEM 2:

Suppose that y; = z;6+¢;, where ¢; = exp (2;0) v; and z; is a sequence of i.i.d. random vectors,
v; is a sequence of i.i.d. random variables independent of z; with E (v;) = 0 and V (v;) = 1, and
z; is a sequence of i.i.d. random vectors independently distributed of (z;,v;). Assume that the
k—dimensional random vector x; does not include a constant.

\
(a) Prove the consistency of the OLS estimator of 8 and derive the asymptotic distribution of

vn (IBOLS - 5) : |
(b) Suggest a course of action for obtaining the "best" estimate for 8 under the assumptions

of the model. In what sense is it best?

PROBLEM 3:
Suppose you have n independent observations {(y;, z;)};., , where y; and z; are scalar random

variables. The density of y; conditional on x; is Gamma:

(i;‘_(miT)_py{"le—yi/(ﬂ+m)
p 1

Recall that for a Gamma distribution with density

A —1 =X i
yp e Y

the mean is p/\ and the variance is p/\?. Propose three estimators for 4 and p, and discuss their

asymptotic properties.
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Part III (based on Ec203C)

1. Consider the Seemingly Unrelated Regression (SUR) model
yij:x;jﬁjnLuij (iZl,...,R;jZl,...,J)

(a) State the conditions for u;; that would allow one to estimate the parameter vectors B;,

Jj=1,..,J, from J separate least-squares (LS) regressions.

(b) Suppose now that for u; = (u;1, ..., ui7) we have
ui|x1i, T, T35 ™~ 1i.d. (0, E) .

How would you obtain a feasible generalized least-squares (FGLS) estimator for

B, ---» By. Justify your answers at each and every stage.

(c) Suppose that it is given that 85 = 83 = 8. How would you get efficient estimates for 8
and 87 Justify your answers at each and every stage.



2. You are presented with a moment equations given by

o (w,B),

where 3 is a K x 1 vector of unknown parameters, and with data w;, for s = 1,...,n, where
w; is a J X 1 vector of data. Also, ¢ (w,f) is an M x 1 vector-valued function. The true
parameter vector is 8y, and our goal is to estimate ;. Suppose that it has already been
established that

Elp(w,Bo) = Ep (waﬂ)“ﬁ:ﬁo = 0.

(a) What are the minimal conditions required by the data and ¢ (w, 8) that would allow

one to estimate 8,. Please justify all statements made.

(b) Suppose now that one suggested a different M x 1 moment vector-valued function, say
¥ (w, B) that satisfies

E [1:[} (w760)] = 07

with M > K. Describe in detail how to obtain the optimal generalize method of
moments (GMM) estimator based on this latter function. Provide detailed justification.

¢) Suppose now that you are told that the model is given b
g y

yi = h(xi, Bo) + &

What restrictions on ; would allow you to estimate 3,7 Please justify your answer.

(d) Suppose the restrictions in (c) are satisfied. Suggest a moment function v (w, By) as in
(b), and justify your answer.



