UCLA Economics

Spring 2001

Econometrics Field Exam

Please answer four of the six questions. Use a separate blue book for each question.

- 1. Suppose that conditional on some covariates X, unemployment durations Y have an exponential distribution with mean $exp(\beta_0 + X'\beta_1)$.
 - (a) Describe how you would estimate $\beta = (\beta_0, \beta_1')'$ by maximum likelihood. given a random sample of size N.
 - (b) What is the variance of the maximum likelihood estimator?
 - (c) Describe how you would test the hypothesis that all the elements of β are equal to zero against the alternative that at least some of them differ from zero. The dimension of X is three. Use a likelihood ratio test. Give the critical value.
 - (d) Suppose you estimate β by doing ordinary least squares regression of log(Y) on X. How does the variance of the two estimators for β_1 compare?

Note that if Z has an exponential distribution with mean λ , then the expected value of log(Z) is $c + log(\lambda)$, where c is a constant whose value does not depend on λ .

2. Consider the following model:

$$Y = X\beta + U$$
,

with instruments Z, so that E[UZ] = 0, but E[XU] may differ from zero. The dimension of X is smaller than that of Z.

- (a) Describe the two-stage-least-squares estimator for β .
- (b) Describe the optimal gmm estimator for β .
- (c) Describe the empirical likelihood estimator for β .
- (d) Which estimator is more efficient in this case? You may assume that, conditional on Z, U has mean zero and variance σ^2 .
- (e) What other differences are there between the three estimators that may affect your choice in a given situation?

3. Consider a regression model with three sets of regressors x, w, z:

$$E(y|x, w, z) = \alpha x + \beta' w + \gamma z$$

Here suppose that x is the scalar variable of interest, and that the vector of variables w is included in the model. The question that arises is whether the scalar z should be included in the model.

- (a) How does the inclusion of z affect the estimated standard error for α ? Express the change in the estimated standard error of α in terms of (a) a portion due to the dependence between x and z, and (b) a portion due to whatever additional explanatory power accompanies the inclusion of z in the regression. Indicate the direction of the impact each of these components on the estimated standard error.
 - Relate the second portion (b) above to measures of \bar{R}^2 for the short (i.e. excluding z) and long (i.e. including z) regressions. For what relationship between the \bar{R}^2 measures of the short and long regressions will you reliably be able to predict the relationship between the standard errors of α in the short and long regressions?
- (b) Explain how you can use regression analysis to isolate the components of x and z that jointly determine the long regression estimates of α and γ . From these, construct an R^2 measure of the loss in the explanatory power of x that occurs when z is introduced into the model.
- (c) How can you estimate the omitted variable bias in α when z is omitted? Decompose this omitted variable bias estimator into (a) a portion that reflects the dependence between x and z, and (b) a portion that reflects the dependence between y and z.

Express the first component (a) in terms of the \mathbb{R}^2 measure from part 3b. From this, express the estimated omitted variables bias in terms of

- a component due to the loss of explanatory power of x when z is added to the model,
- a component due to the dependence between y and z,
- other components. Identify what these other components are and how they affect the bias.

4. Suppose that the Classical Normal Regression Model is applicable to

$$y_i = x_i \beta + \varepsilon_i$$
 $i = 1, ..., n$

where $E(\varepsilon_i^2) \equiv \sigma^2$ is known. We wish to test the set of J restrictions $R\beta = r$. Show that the Wald, Lagrange Multiplier and Likelihood Ratio test statistics are identical. Is this still true when σ^2 is estimated?

5. Derive the probability limits of the first-difference and the OLS estimators of ϕ in the model:

$$y_{it} = \phi y_{it-1} + \alpha_i + \varepsilon_{it}$$
 $i = 1, ..., N;$ $t = 1, 2, 3$

from a sample of N observations on (y_{i1}, y_{i2}, y_{i3}) . Are they consistent? If not, describe a consistent estimator of ϕ . Let the following assumptions hold:

- (a) ε_{it} is uncorrelated with all lags of y_{it} and with α_i .
- (b) ε_{it} is homoskedastic over time.
- (c) $E(\varepsilon_{it}) = E(\alpha_i) = 0$ for all t.
- (d) The correlation between y_{it} and α_i is constant over time.
- (e) y_{it} is homoskedastic for all t.

Note that (d) implies mean stationarity and with (e) we have full covariance stationarity of y_{it} .

- 6. Suppose (x_i, y_i) is an i.i.d. sequence, with x_i a scalar and $E(y_i|x_i) = 1 + x_i + \mathbf{1}(x_i > 1/2)$. Assume $x_i \sim U[0, 1]$, the uniform distribution on [0, 1]. Let $z_i = (1, x_i)$, and let $\hat{\beta}$ denote the OLS coefficients in a regression of y_i on z_i . For the following questions state any additional assumptions that are needed.
 - (a) Let $\beta = \text{plim } \hat{\beta}$. What is β ? (Give a numerical value.)
 - (b) Let $\epsilon_i \equiv y_i z_i'\beta$. Consider $E(\epsilon_i|x_i)$, $E(x_i\epsilon_i)$, and $E(\epsilon_i)$. Which are equal to zero and which are nonzero?
 - (c) Interpret the results in part (b).