Fall 2004
Department of Economics
UCLA

ECONOMETRICS FIELD EXAMINATION

Instructions: This is a 4 hour closed book/closed notes exam. There are FOUR parts in the exam. Answer ALL questions of ONLY TWO parts of your choice. Use a separate bluebook for each part. GOOD LUCK!

PART I

Question 1:

Suppose that

$$y_i = G\left(x_i \cdot \beta\right) + \varepsilon_i$$

where $G(\cdot)$ is some smooth function and $\varepsilon_i \sim N(0, \sigma^2)$.

a. Show that the log likelihood is equal to

$$L\left(\beta, \sigma^{2}\right) = -\frac{n}{2}\log\left(2\pi\right) - \frac{n}{2}\log\left(\sigma^{2}\right) - \frac{\sum_{i=1}^{n}\left(y_{i} - G\left(x_{i} \cdot \beta\right)\right)^{2}}{2\sigma^{2}}$$

Let

$$\sigma^{2}\left(\beta\right) = \operatorname*{argmax}_{\sigma^{2}}L\left(\beta,\sigma^{2}\right)$$

Show that

$$\sigma^{2}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - G(x_{i} \cdot \beta))^{2}$$

and

$$L\left(\beta, \sigma^{2}\left(\beta\right)\right) = -\frac{n}{2}\log\left(2\pi\right) - \frac{n}{2}\log\left(\frac{1}{n}\sum_{i=1}^{n}\left(y_{i} - G\left(x_{i} \cdot \beta\right)\right)^{2}\right) - \frac{n}{2}$$

Conclude that the MLE for β is equal to the nonlinear least squares estimator

$$\widehat{\beta} \equiv \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - G(x_i \cdot \beta))^2$$

b. Let

$$\phi \equiv E\left[g\left(x_{i}\cdot\beta\right)\beta\right]$$

and

$$\widehat{\phi} \equiv n^{-1} \sum_{i=1}^{n} g\left(x_{i} \cdot \widehat{\beta}\right) \widehat{\beta}$$

where

$$g\left(s\right)\equiv rac{dG\left(s
ight)}{ds}$$

and $\hat{\beta}$ denotes the MLE of β . What is the asymptotic distribution of $\sqrt{n} (\hat{\phi} - \phi)$? How would you estimate the asymptotic variance?

Question 2:

Suppose that the binary treatment D_i is random conditional on some set of covariates X_i :

$$D_i \perp \!\!\! \perp (Y_{1i}, Y_{0i}) | X_i$$

a. Show that

$$\beta = E\left[\beta\left(X_{i}\right)\right]$$

where

$$\beta \equiv E[E[Y_{1i} - Y_{0i} | X_i]]$$

$$\beta(x) \equiv E[Y_{1i} - Y_{0i} | X_i = x]$$

b. Show that

$$\gamma = \frac{E\left[\beta\left(X_{i}\right) \cdot p\left(X_{i}\right)\right]}{E\left[D_{i}\right]}$$

where

$$\gamma \equiv E\left[Y_{1i} - Y_{0i} \middle| D_i = 1\right]$$

and

$$p(X_i) \equiv \Pr[D_i = 1 | X_i]$$

c. Show that

$$\beta(x) = \frac{E[D_{i}Y_{i}|X_{i} = x]}{E[D_{i}|X_{i} = x]} - \frac{E[(1 - D_{i})Y_{i}|X_{i} = x]}{E[1 - D_{i}|X_{i} = x]}$$

d. Suggest an estimator of γ assuming that you have nonparametric estimators $\widehat{\beta}(X_i)$ and $\widehat{p}(X_i)$ of $\beta(X_i)$ and $p(X_i)$.

PART II

Question 1—Dynamic Programming:

Consider a three-period model in which an individual makes decisions about three variables: consumption c_t , leisure l_t , and the amount to invest in health h_t , for t = 1, 2, 3. Assume that all individuals are old enough, so that they cannot choose to attend school, and hence cannot increase their education levels. For simplicity assume that l_t can take on only three values: (i) l^{FT} , the amount of leisure if the person works at a full-time job; (ii) l^{PT} , the amount of leisure if the person works at a part-time job; and (iii) l_0 , the amount of leisure if the person does not work.

Each period utility is given by

$$u_t(c_t, l_t) = u(c_t, l_t) = \kappa c_t^{\gamma_1} l_t^{\gamma_2} - \gamma_3 dh_{it}.$$

where $dh_{it} = 1$ if the person is in bad health and $dh_{it} = 0$, otherwise. The probability that a person will experience a bad health condition is an increasing function of the individual's age and a decreasing function of the amount invested in health in the proceeding period, say $h_{i,t-1}$. Denote this function by $f_h(age, h|dh = 0)$. Furthermore, assume that a bad health condition is an absorbing state, that is, once a person is in bad health he/she will stay in that state for the remainder of his/her life.

The wage function is given by

$$\log w_{it} = \alpha_i + \alpha_1 e d_{it} + \alpha_2 e d_{it}^2 + \alpha_3 e x_{it} + \alpha_4 e x_{it}^2 + \varepsilon_{it},$$

where ed denotes the education level of the individual and ex denotes his/her labor market experience.

Each individual also gets a stream of unearned income denoted by i_t .

The individual starts with an endowment of A_0 , and earned an interest rate of r_t for any unused monetary resources carried over from period t to period t + 1. Assume that the interest rates for the three periods are constant and known, say r_0 .

For the questions specified below, if you think that some necessary information has been omitted, please make assumption(s) about that information.

- 1. Define the state vector, say z_{it} .
- 2. Specify all the necessary budget constraints, regarding money and time.
- 3. Specify the individual's value function, $V(z_{it}, t)$ for each period, t = 1, 2, 3.
- 4. Provide the full list of parameters that need to be estimated. Let the true parameter vector be denoted by ϕ_0 .
- 5. Suppose that you are presented with unlimited resources for collecting data in order to estimate the above model. Specify in detail all the data that you will be collecting.

- 6. Suppose that you want to use the method of simulated moments for estimating the parameter vector ϕ_0 . Provide a detailed answer as to the steps that you will need to take. You should answer this question as if you were giving instructions to a professional programmer that needs to write the program for you.
- 7. Provide the asymptotic distribution for the parameter vector estimate, say $\hat{\phi}$, obtained in (6). Provide brief justifications for all your claims.

Question 2—Bootstrapping:

Consider the non-linear regression model given by

$$y_i = g\left(x_i'\beta_0\right) + \varepsilon_i,$$

where ε_i are independent, and

$$\varepsilon_{i}|x_{i}\sim\left(0,\sigma_{\varepsilon}^{2}\left(x_{i}\right)\right)$$

for i = 1, ..., n. That is, the variance of ε_i , conditional on x_i , is a function of x_i . Suppose that you obtain an estimate for β_0 , say $\widehat{\beta}$, by a non-linear least-squares method, that is,

 $\widehat{eta} \equiv rg \min_{eta} rac{1}{n} \sum_{i=1}^{n} \left(y_i - g \left(x_i' eta
ight)
ight)^2.$

- 1. Suppose that you want to obtain the standard errors for $\widehat{\beta}$ by using the bootstrap method. Determine whether or not the bootstrap method is valid in this case.
- 2. Suppose the bootstrap method is valid, how would you obtain an estimate for the standard error vector, say se_{β} .
- 3. Suppose now that you want to construct a confidence interval for $h(\beta_0)$, where $h(\cdot)$ is some non-linear function of the parameter vector β_0 . How would you obtain such a confidence interval using the information you already obtained in (2)?
- 4. What alternative method can you suggest for providing a confidence interval for $h(\beta_0)$? Be very specific in your answer.
- 5. Which of the two methods, the one in (3), or the one in (4) would you prefer. Justify your answer.

PART III

Question 1:

Consider the dynamic linear panel data model

$$y_{it} = \beta_0 y_{it-1} + \alpha_i + \varepsilon_{it}$$

where i = 1, ..., N and t = 1, ..., T with T of smaller order than N.

(a) Describe and justify an efficient estimator of β_0 under the assumption

$$E^*\left(\varepsilon_{it}|y_{i0}, y_{i1}, ..., y_{it-1}, \alpha_i\right) = 0$$

Here E^* denotes the best linear predictor.

(b) Assume that $y_{it}|y_{it-1},...,y_{i0},\alpha_i \sim N\left(\beta_0 y_{it-1} + \alpha_i,\sigma^2\right)$. Find the density of $(y_{i1},...,y_{iT})$ given (y_{i0},α_i) . Is it a good idea to use the log of this density summed over i to estimate β_0 and σ^2 along with the "fixed effects" α_i ? Prove your claim.

(c) If $\alpha_i|y_{i0} \sim N(\gamma_0 + \gamma_1 y_{i0}, \sigma_c^2)$ where $\sigma_c^2 \equiv Var(c_i)$ and $c_i \equiv \alpha_i - \gamma_0 - \gamma_1 y_{i0}$, write down the density of $(y_{i1}, ..., y_{iT})$ given y_{i0} . How would you estimate all the unknown parameters of the model?

Question 2:

Consider the doubly censored regression model:

$$y_{i}^{*} = x_{i}\beta_{0} + \varepsilon_{i}$$

$$y_{i} = c_{1} \text{ if } y_{i}^{*} \leq c_{1}$$

$$= y_{i}^{*} \text{ if } c_{1} < y_{i}^{*} < c_{2}$$

$$= c_{2} \text{ if } y_{i}^{*} \geq c_{2}$$

where x_i is $1 \times K$, β_0 is $K \times 1$, and $c_1 < c_2$ are known censoring points.

(a) Describe the ML estimator of the unknown parameters of the model under the assumption that $\varepsilon_i | x_i \sim N(0, \sigma^2)$.

(b) Find $E(y_i|x_i, c_1 < y_i < c_2)$ and $E(y_i|x_i)$. Use the fact that if $Z \sim N(0, 1)$ then

$$E(Z|c_1 < Z < c_2) = \frac{\phi(c_1) - \phi(c_2)}{\Phi(c_2) - \Phi(c_1)}$$

where ϕ and Φ are the pdf and cdf of a standard normal. Describe estimators of β_0 based on the these conditional expectations functions.

(c) Describe an estimator of β_0 that does not use any parametric assumptions on the form of the conditional distribution function of ε_i given x_i . Make sure to state all crucial assumptions underlying the estimator.

PART IV

Question 1: True/Questionable/False? (No points are given for just stating true/questionable or false. The explanation is what counts.)

- (i) The process X_t that satisfies $X_t + 1.9X_{t-1} + .88X_{t-2} = \varepsilon_t + .2\varepsilon_{t-1} + .7\varepsilon_{t-2}$ (where ε_t is white noise) is causal and invertible.
- (ii) If a time series is ergodic (not just "ergodic for the mean") then it is also α -mixing.
- (iii) If one regresses a random walk $y_{1,t}$ on its own lagged observation $y_{1,t-1}$ and on an independent random walk $y_{2,t}$

 $y_{1,t} = \widehat{\alpha} y_{1,t-1} + \widehat{\beta} y_{2,t}$

then the theory of spurious regression implies that the OLS estimator $\widehat{\beta}$ of β is inconsistent. (iv) In general, in HAC estimation, the bandwidth S_T has to grow to infinity as the sample size T goes to infinity to guarantee that the variance of the HAC estimator converges to zero.

Question 2:

- a) Precisely state Donsker's theorem and the continuous mapping theorem with all the assumptions needed. What is the Beveridge-Nelson decomposition?
- c) For t=1,...,T, let $u_t:=(u_{1t},u_{2t})$ where $u_t=\Psi(L)\varepsilon_t$ for ε_t an i.i.d. (2×1) vector with mean zero, variance PP, and finite fourth moments. Assume further that $\{s\Psi_s\}_{s=0}^{\infty}$ is absolutely summable and that $\Psi(1)P$ is nonsingular. For i=1,2, define $\xi_{it}:=\sum_{s=1}^t u_{is}$. Derive the asymptotic distribution of $T^{-3/2}\sum_{t=1}^T (\xi_{1t},\xi_{2t})$.

Question 3:

Show that for a covariance stationary process Y_t , the linear projection $\widehat{E}(Y_{t+1}|Y_t)$ of Y_{t+1} on a constant and Y_t is given by

$$\widehat{E}(Y_{t+1}|Y_t) = (1 - \rho_1)\mu + \rho_1 Y_t,$$

where $\mu := E(Y_t)$, $\rho_1 := \gamma_1/\gamma_0$, and γ_k , as usually, denotes the covariance of Y_t at lag k. Show that for an AR(2) process with AR parameters ϕ_i (i = 1, 2), the implied forecast is

$$\mu + [\phi_1/(1-\phi_2)](Y_t - \mu).$$

Question 4:

Explain briefly how the Phillips and Perron test for a unit root works in the regression model

$$y_t = \alpha + \rho y_{t-1} + u_t,$$

where the error term u_t is possibly serially correlated and heteroskedastic.