
 

 



 

 

 



 

 

 

 



 

 

 



1. Price Wars in Boom and Bust Times (Rotemburg, Saloner AER, 1986): Two �rms
i; j engage in repeated price competition in a market for a homogeneous good with time-

varying demand qt = at�pt. Here, pt is the lower of two prices pi;t; pj;t in period t = 1; 2; :::,
and the demand intercept at is an i.i.d. random variable, which takes value a (a boom)

with probability �, and a < a (a bust) with probability 1��. Firms observe the realization
of at before they set prices pi;t; pj;t. Firms produce at zero costs, so period pro�ts are

�i;t =

8><>:
pi;t(at � pi;t) when pi;t < pj;t;
1
2pi;t(at � pi;t) when pi;t = pj;t;

0 when pi;t > pj;t:

Firms discount future pro�ts at rate � < 1.

(a) Assume the �rms compete only once, rather than repeatedly. What are equilibrium

prices and pro�ts, and symmetric collusive prices (i.e. the monopoly price) and

pro�ts as a function of demand at?

Answer: (1 point) Equilibrium prices are pi = pj = 0 and pro�ts are zero. The

monopoly price is a=2 and per-�rm pro�t is a2=8.

(b) Returning to the in�nitely repeated game, assume that � = 1, so demand is always

high. For what values of � can the �rms use trigger-strategies to charge monopoly

prices on path in a SPE? How does your answer change if � = 0, so demand is always

low?

Answer: (3 points) Per period pro�ts from charging monopoly prices equal a2=8.

By slightly undercutting the competitor, a �rm can grab the entire market for a proft

of (almost) a2=4, but then lose all future pro�ts. Thus, sticking to the monopoly

price is a SPE if a2=8 � (1� �)a2=4, that is if � � � := 1=2.
Since all per period payo¤s scale in the same way with the demand intercept, the

bound on the discount factor � = 1=2 is the same when demand is always low.

(c) Now assume 0 < � < 1. For what values of � can the �rms use a trigger-strategy

to charge monopoly prices on path in a SPE? Is the temptation to deviate from this

equilibrium greater in boom or bust periods? (Hint: First, calculate the discounted

expected value of charging monopoly prices forever, starting in the next period)

Answer: (4 points) Discounted expected pro�ts from this strategy, starting in

the next period are �
8(�a

2 + (1 � �)a2 _); triggering a price war destroys all future
value. Slightly undercutting the monopoly price in a boom (resp. bust) period

boosts current pro�ts by (1� �)a2=8 (resp (1� �)a2=8). Since a > a, the temptation
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is greater in boom periods. The equilibrium condition is

�

8
(�a2 + (1� �)a2) � (1� �)a2=8

�a2 + (1� �)a2
a2

� 1� �
�

� � �� :=
1

1 + � + (1� �)a2=a2

(d) Is the lower bound on the discount factor in part (c) lower or higher than in part

(b)? Give a brief intuition for your answer.

Answer: (2 points) Since a2=a2 < 1, �� > � = 1=2, so the lower bound is higher
than in part (b). The temptation to deviate in part (c) is as large as in part (b), but

the continuation pro�ts are smaller since the boom may not continue, but turn into

bust in the future.
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2. Swapping wallets. There are two wallets: one is "small", and contains 2n dollars where
n = 0; :::; N � 1 have equal probability 1=N ; the other one is "big", and contains twice
as much money as the small wallet; e.g. if the small wallet contains $4, the large one

contains $8. Initially, these wallets are randomly assigned to two players i = A;B,1 who

can then swap their wallets. Each player only observes the money in her own wallet (but

does not know whether she has the small or the big wallet). The players simultaneously

choose whether they agree to the swap, and trade occurs when both players agree. Players

maximize the expected amount of money in the wallet they end up with.

(a) What are the type spaces �i in this game of incomplete information, and what are

their beliefs �(��ij�i) over the other player�s type?
Answer: (2 points) A player�s type is the amount of money in her wallet �i =

f1; :::; 2Ng. If

� �i = 1, then i knows that �j = 2
� �i = 2N then i knows that �j = 2N�1

� �i = 2; :::; 2N�1 then i believes that �j = 1
2�i or �j = 2�i with equal probability

(b) Solve for the the unique Bayes-Nash equilibrium in weakly undominated strategies.

Answer: (3 points)

� Clearly, it is weakly dominant for the highest type �i = 2N not to trade.
� Since �i = 2N does not trade, the next lower type �i = 2N�1 infers that agreeing
to trade may only lead to trade if �j = 2N�2, in which case it is not pro�table.

So �i = 2N�1 does not trade either.

� By induction, all types �i � 2 choose not to trade.
� In fact, type �i = 1 knows that �j = 2, and so �nds it weakly dominant to agree
to trade. But this does not matter for the equilibrium outcome since �j = 2

does not agree to trade.

Now assume that the small wallet contains 2n dollars for n = 0; 1; 2; ::: with proba-

bility (1� b)bn where b < 1=2.

(c) What are player i�s beliefs about the money in j�s wallet, when his own contains

�i = 2
n dollars? (Hint: Use Bayes�rule to compute i�s belief �0 that his wallet is the

small one)

Answer: (2 points) For n = 0, i.e. if �i = 20 = 1, i knows that she has the

small wallet, and so �j = 2. For n > 0, the probability of �i = 2n conditional on

1More precisely, each player has a 50% chance of receiving either the small or the big wallet, and this event
is independent of the amount of money in the small wallet.
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the wallet size is Pr(�i = 2njsmall) = (1 � b)bn and Pr(�i = 2njbig) = (1 � b)bn�1.
Since the prior of having the small wallet equals � = 1=2 her posterior equals �0 =

�(1�b)bn
�(1�b)bn+(1��)(1�b)bn�1 =

b
1+b <

1
2 . Thus she believes �j = 2n+1 with probability

b
1+b <

1
2 and �j = 2

n�1 with the residual probability 1
1+b >

1
2 .

(d) Solve for the unique symmetric Bayes-Nash equilibrium in pure and weakly undom-

inated strategies.

Answer: (3 points) For the lowest type �i = 20 = 1, agreeing to trade is weakly
dominant, as before. It clearly is an equilibrium for no other type to agree to trade.

Indeed, this is the only equilibrium. Assume to the contrary that some type �i = 2n�1

with n > 1 agrees to trade. This can only be pro�table if �i = 2n also agrees to

trade. But �i = 2n believes that �j = 2n�1 with probability 1
1+b >

2
3 and �j = 2

n+1

with probability b
1+b <

1
3 . Thus the expected pro�ts from trading are at most (in

the most optimistic case, where �j = 2n+1 agrees to trade) 1
1+b(�2

n�1) + b
1+b2

n <
2
3(�2

n�1) + 1
32
n = 0. This shows that �i = 2n does not agree to trade, and hence

neither does �i = 2n�1.
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Answer to 5: 

(a)  For each type in the set of participating types, there must be global incentive compatibility 

and the equilibrium payoff must satisfy a participation constraint. For each type x  that does 

not participate, the outside payoff must exceed the utility ( , )u x o  for all outcomes 

{ ( )} {( ( ), ( ))}P Po q r       

(b)  Suppose types in ˆ [ , ]P P    participate.  For incentive compatibility, 

 ˆ( ) ( ), ,o o x x P


     

( )
( , ) ( , , )

( )

B z
u o u q r r

A
 


    

Let { ( )} Pq     be separating BNE actions. 

Then 

 ˆ( ) ( , ( )) ( , ( )), ,U u o u o x x P         

 

Therefore x   solves 
ˆ

{ ( , ( ))} ( )
x P

Max u o x U 


  . 

( )
( , ( ))

( )

q x
u o x x

A



  . 

(c)   Therefore  

 
( )

( , ( )) 1
( )

u q x
o x

x A





 


.     (1) 

This must be zero at x   . Therefore  

 
( )

( , ( )) 1 0
( )

u q x
x o x

x A x


  


 

Substituting into (1), 

 
( )

( , ( )) 1
( )

u A x
o x

x A





 


. 

Note that the right hand side is positive for x   and negative for x   . 

Therefore if the FOC holds, all incentive compatibility constraints are satisfied. 
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(d)  Envelope Theorem 

 
2

( ( ) ( ) ( ( )
( ) ( , ( )) ( )

( ) ( ) ( )x

B q A B q
U u o x A

A A A

  
  

   


   


 

But 

( ( )) ( ( ))
( ) ( )

( ) ( )

B q B q
U r

A A

 
  

 
      

Therefore 
( ( ))

( )
( )

B q
U

A


 


   

( )
( ) ( ( )

( )

A
U A

A


  




    

Rearranging this equation, 

 [ ( ) ( )] ( ) ( ) ( ) ( ) ( )
d

A U A U A U A
d

       


       

Integrating both sides of this equation, it follows that ( )U   is a level set of 

0

( , ) ( ) ( )K u A u xA x dx


    . 

There are two possible education technologies, for 1T  the education cost function is 

1
1

( )
( , )

B z
C z


 , and for 2T  it is 2

2 2

( )
( , )

1

B z
C z





 

(e)- (f) 

 21
1 2

0

( , )K u u xdx u


       ,    2 2 32
2 3

0

( , ) (1 ) 2 (1 )K u u x xdx u


          

Boundary condition for a separating PBE. 

The responders know that the minimum value of any type is zero  thus type   is paid at least 

zero if he chooses 0z   .  In a separating equilibrium responders correctly believe that his type 

is zero he will be paid zero. Since (0) 0U  . It follows that (0) (0) (0) 0q r U    .  Then the 

equilibrium payoff function ( )U   is the level set ( , ) 0K u     . 

21
1 2( , ) 0K u u     ,  2 32

2 3( , ) (1 ) 0K u u      . 

Therefore  
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 1
1 2( )U    and 

32
3

2 2
( )

1
U








.  

Note that participation constraints are satisfied. 

 

 

 

 

 

 

 

 

 

 

 

These are the unique separating PBE payoff functions satisfying the boundary condition. 

(g)  Note that 2( ) ( )U U   (see part (f)). 

Consider the level set 1( , ) 0K U  . We will write this as 1( ,0)U   . Both 1( ,0)U   and (0)U . 

Pass through the origin (see below)  

 

 

 

 

 

 

 

 

 

  

  

  

  

Fig. 5-2 separating PBE 

  

  

  

  

  

  

Fig. 5-1 Unique separating PBE for each technology  
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The graph of 1( ,0)U   has a slope of ½.  The graph of ( )U   has a slope of zero at 0   .   

At the point of intersection, 

 
3

2
3 21 2

 





  i.e.  

2

2

2 1

31 2







.   Then 2 3    and so 1/2ˆ 3    

This is depicted in Fig. 5-2. 

 

Consider another solution to the differential equation  1( , )K u   where 0   . We will write 

this as 1( , )U    . This is depicted in Fig. 5-3 

   

 

 

 

 

 

 

 

 

 

 

 

 

The set of participating types is 1 2( ) [ , ]P   . 

Note that the boundary types are indifferent between signaling and staking out.  This is a PBE 

because under the belief that a player off the equilibrium path is the worst type, he will be 

offered a wage of zero. Thus the player will be strictly worse off.  

  

  

  

  

Fig. 5-3 Another separating PBE 
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 (g)  Both signaling technologies available 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any level set, 2 2
ˆ( , )K u k  , intersecting 1

1 2( )U     from below at 
ˆ̂
  is a PBE.  All types 

ˆ̂
   

choose technology 2T   

Any higher indexed level set yields a higher equilibrium payoff. Therefore the best separating 

PBE is the one depicted In Fig. 5-5. 

 

Solve for this by finding the type *  that solves  

2 3 31 2 1 1
2 1 1 2 3 2 6{ ( , ( )) (1 )( )Max K U


            

FOC 21 1
2 2 1    so * 1   . 

The worst separating PBE is the PBE in which all use technology 1T   

  

  

  

  

Fig. 5-4 Continuum of PBE  
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Fig. 5-5 Best separating PBE  
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Answer to 6. 

Incentive compatibility 

( ) ( ),o x o x


     

If the outcome for type   is ( , )o q r  his payoff is 

 ( , ) ( , )u o B q r          (1) 

The slope of a the level set at ( , )q r  is 

ˆ

/ ( , )
u u

dr u u
p q

dq q r




 
 

 
  

A level set for type   is depicted in the left diagram below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The right hand diagram shows the outcome for type   and the level sets through ( )o    for type 

  and type x   . To be incentive compatible ( )o x  must lie in the sublevel set 

( , , ) ( , ( ), ( ))u q r u q r     and the superlevel set ( , , ) ( , ( ), ( ))u x q r u x q r  . This is the shaded 

region. 

Formal proof by contradiction. (NOT REQUIRED) 

 

  

  

  

  

  

Fig. 6-1: SCP and Monotonicity  

  

  

  

  

  

  

  

  

  
Slope =   
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Suppose that for some   and x  , ( ) ( )q x q  .  

( )q x  is the choice of type x  so the extra benefit of choosing ( )q x  rather than ( )q   must be 

less than the extra payoff 

( )

( )

( , ( )) ( , ( ) ( , ) ( ) ( )
q x

q

B x q x B x q MB x q dq r x r


       

Higher types have a higher marginal value of quality,  Therefore 

( ) ( )

( ) ( )

( , ( )) ( , ( ) ( , ) ( , ) ( ) ( )
q x q x

q q

B q x B q MB q dq MB x q dq r x r
 

           

Thus type   is strictly better off choosing ( )q x  instead of ( )q   so ( )q   is not a best response. 

 

 

(b)  Implications of incentive compatibility 

( ) ( , ( )) ( , ( )) ( , ( )) ( ),U u o u o x B q x r x           and x    (2) 

Thus ( , )u x  takes on its global maximum at x   . 

Appealing to the Envelope Theorem 

            ( ) ( , )
B

U q 



 


  

Integrating by parts, 

 
2 2

2

0
0 0

[ ( )] ( ) ( ) ( )(1 ( )) ( )((1 ( ))U U F d U F U F d                 

              
( )

(0) [ ] (0) [ ]
( ) ( )

B
U

U U
h h

 
 


     , where ( )h   is the hazard rate. 

Total surplus ( , )S q  goes either to the buyers or the designer. 

 

 0[ ( )] [ ( , ( )) ( ( ))] [ ( )]u B q C q U        
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                  [ ( , ( )) ( ( )) ] (0)
( )

B

B q C q U
h
  




     

 

 

 

(c)  Define the virtual profit  

0( , ) ( , ( )) ( ( ))
( )

B

u q B q C q
h
   




     

  25 1
4 2

1
( )

( )
q q q

h



    . 

1
, 1

2
( )

1 1
( ), 1

2

x x

F x
x a

x
a





  



 . 

2
, 1

2
1 ( )

2
, 1

2

x
x

F x
a x

x
a




 
 



 

2 , [0,1)1 1 ( )

2 , [1,1 ]( ) ( )

x xF x

a x x ah x f x

 
 

  
 

1    

  25 1
0 4 2( , ) ( ) (2 )u q q q q        

23 1
4 2( 2 )q q     

1    

  25 1
0 4 2( , ) ( ) ( )u q q q a q        

25 1
4 2( 2 2 )a q q     

(d)  Therefore  
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0 3
4( , ) 2

u
q q

q
 


  


, [0,1)      (3)  

0 5
4( , ) 2 2

u
q a q

q
 


   


, [1,1 ]a       (4) 

 

The solution is therefore 3
8( ) 0,q       and 3 31

2 8 8( ) ( ),q       . Note that, as required, 

( )q   is increasing. 

The point-wise maximizer ( )q   is depicted below for the two cases. 

 

 

 

 

 

 

 

 

 

Since monotonicity holds, ( )q   . 

Graphical interpretation. See Fig. 6-2.   

3
4

5
4

2 , [0,1)
( )

2 2 , [1,1 ]
q

a a

 


 

 


   
  

3 51
8 2 4

5 51
8 2 4

, [0, )
( )

,

q q
q

a q q


 


  
. 

 

(e’)  Graphically, the incentive compatible outcomes implicitly define the mapping 

( )R q  , i.e. ( ) ( ( ))r R q   . 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  



John Riley Micro Comp 1 August 2018 
 

13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the slope of the graph of this function at ( )q   must be tangential to the level set for type 

   at ( )q   . 

 ( , ) ( , )u o B q r    . 

/ ( , )
u

dr u u B
p q

dq r q q


  
  

  
 .  (5) 

Therefore 

( ( )) ( , ( ))R q p q         (6) 

 

 Substitute into (6) to obtain ( )R q  . Then integrate with lower boundary condition 

( , ( )) (0,0)q R q   .  

Appealing to (6), 

  

  

  

  

  

  

Fig. 6-2 Incentive compatibility  
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( ( )) ( , ( ))R q p q    . 

Then 

 ( ) ( ( ), )R q p q q   

Where 5
4( , )p q q      

 
3 51
8 2 4

5 51
8 2 4

, [0, )
( )

,

q q
q

a q q


 


  
 

In case (i) 

 5 5 3 1 1
4 4 8 2 2( ( ), ) ( ) 2p q q q q q q q          . 

Therefore 1
2( ) 2R q q   . 

Therefore 

 2 21 1
4 4( ) 2 (0) 2R q q q R q q       

In the second case the function R(q) has a gap.  There is an intermediate quality range that is 

not supplied by the monopoly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

Fig. 6-3 Quality Gap  
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(f) 

 

 

 

 

 

 

 

 

 

Pointwise maximization for    and    . 

Suppose (1)q  is optimal. Consider any monotonic ( )q   on [ , ]    as depicted above.  This is not 

optimal since expected profit is pointwise higher below.  

 

 

 

 

 

 

 

 

 

 

 

 

Thus there is an interval of types * *[ , ]   who have the same outcome.  
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