Core Exam

The exam consists of three parts. For each part answer two of the three questions. Use separate blue books for the three parts.

Part I

Choose two out of the following three questions.

- 1. Let the random variable X have a binomial distribution with Pr(X=1)=1/4. Conditional on X=x, the random variable Y has an exponential distribution with mean $\mu \cdot (x+1)$.
 - (a) Find the conditional probability that X = 1 given Y = y.
 - (b) Calculate the mean and variance of Y (marginal, not conditional on X).
 - (c) Calculate the Cramer-Rao bound for μ .
 - (d) Find, if possible, an unbiased estimator for μ with variance equal to the Cramer-Rao bound.
 - (e) Let $(x_1, y_1), \ldots, (x_N, y_N)$ be a random sample from this distribution. Find a one-dimensional sufficient statistic for μ .
- 2. Let X_1, X_2, \ldots, X_N be independent random variables with normal distributions with mean μ and variance σ^2 .
 - (a) Find the moment generating function for a random variable with a normal distribution with mean μ and variance σ^2 .
 - (b) Find the maximum likelihood estimator for σ^2 .
 - (c) Find an unbiased estimator for σ^2 .
 - (d) Show that the difference between the mvue and mle converges to zero in probability as the sample size goes to infinity.
- 3. Let X be a random variable with probability density function

$$f_X(x;\mu) = \frac{1}{\mu} \exp(-x/\mu),$$

for x > 0 and zero elsewhere.

- (a) Calculate the mean and variance of X.
- (b) Calculate the mean and variance of X conditional on X < 8.
- (c) Let $x_1, x_2, ..., x_N$ be a random sample from this distribution, with N=20, $\sum x=95$, and $\sum x^2=590$. Calculate the maximum likelihood estimate.
- (d) Estimate the probability that X < 8 and its asymptotic variance.
- (e) Test the hypothesis that $\mu=4$ at the 10% level using a likelihood ratio test.
- (f) Test the same hypothesis using a Lagrange multiplier (score) test.

Part II

Choose two out of the following three questions.

1. Suppose you have n independent observations $\{(y_i, X_i)\}_{i=1}^n$, where y_i is a scalar random variable, and X_i is a $(1 \times k)$ random vector. The observations can be grouped into G subgroups, not necessarily of the same size, for each one of which,

$$y_{ig}|X_i \sim N\left(X_i\beta, \sigma_g^2\right)$$

where g = 1, ..., G.

- (a) Compute the MLE's of β and σ_g^2 .
- (b) Construct the Likelihood Ratio test statistic for groupwise heteroskedasticity, that is, for testing the hypothesis that $\sigma_1^2 = \dots = \sigma_G^2$. Make sure that you state the asymptotic distribution of the test statistic.
- 2. For each one of the following claims show whether they are true or false.
 - (a) The R^2 of a regression does not change if we add to the dependent variable a constant and/or if multiply the dependent variable by a constant.
 - (b) The OLS estimator is consistent when the dependent variable in a regression is subject to classical measurement error.
 - (c) The OLS estimator is consistent when the independent variables in a regression are subject to classical measurement error.

NOTE: For claims (b) and (c) it suffices to consider a bivariate regression model:

$$y_i^* = \alpha + \beta x_i^* + \varepsilon_i$$

where instead of observing y^* or x^* in (b) and (c) respectively, we observe:

$$y_i = y_i^* + v_i$$

$$x_i = x_i^* + v_i$$

where
$$E(\varepsilon_i) = E(v_i) = E(\varepsilon_i x_i^*) = E(v_i x_i^*) = E(v_i y_i^*) = E(v_i \varepsilon_i) = 0.$$

3. Suppose you have n independent observations $\{(y_i, x_i)\}_{i=1}^n$, where y_i and x_i are scalar random variables. The density of y_i conditional on x_i is:

$$\frac{\left(\beta+x_{i}\right)^{-\rho}}{\Gamma\left(\rho\right)}y_{i}^{\rho-1}e^{-y_{i}/\left(\beta+x_{i}\right)}$$

Thus, y_i is Gamma distributed. Describe 3 ways for estimating β and ρ . Recall that for a Gamma distribution with density

$$\frac{\lambda^{\rho}}{\Gamma\left(\rho\right)}y^{\rho-1}e^{-\lambda y}$$

the mean is ρ/λ and the variance is ρ/λ^2 .

Part III

Choose two out of the following three questions.

1. Consider the following two-equation model relating schooling (s_i) and log earnings (y_i) to an exogenous variable x_i , measuring distance (in hundreds of miles) from the nearest state university. (All variables are assumed to be recorded in deviations from means.)

$$s_i = \beta x_i + \epsilon_i$$

$$y_i = \delta s_i + u_i$$

Assume that (ϵ_i, u_i) is jointly normally distributed. The reduced form is

$$(s_i \quad y_i) = x_i \Pi + v_i',$$

where

$$E(v_i) = 0, \qquad E(v_i v_i') = \Omega$$

The following least-squares estimates are obtained from a sample of data:

$$\hat{\Pi} = (-2 -.18), \qquad \hat{\Omega} = \begin{pmatrix} 2.0 & .78 \\ .78 & .6242 \end{pmatrix}.$$

- (a) Examine the identification of both equations (directly, or by using order and rank conditions).
- (b) Obtain the indirect least squares estimate of δ . If you were to use x_i as an instrument and estimate δ using the IV estimator, what would your result be? How would the standard errors of the ILS and IV estimators compare?
- (c) You are told that for individual (n+1), $x_{n+1} = 1$ and $s_{n+1} = .5$. Provide a forecast for y_{n+1} .

Note: For the bivariate normal distribution:

$$\left(\begin{array}{c} x \\ y \end{array}\right) \sim N\left(\left[\begin{array}{c} \mu_x \\ \mu_y \end{array}\right], \left[\begin{array}{cc} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{array}\right]\right),$$

the marginal distributions are given by

$$x \sim N(\mu_x, \sigma_x^2),$$

$$y \sim N(\mu_y, \sigma_y^2).$$

and the conditional distribution of y given x is

$$y|x \sim N(\alpha + \beta x, \sigma_y^2(1-\rho^2)).$$

where $\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$ is the correlation between x and y, and

$$\alpha = \mu_y - \beta \mu_x$$
$$\beta = \frac{\sigma_{xy}}{\sigma_x^2}$$

2. Consider a linear model with a single regressor in mean-deviated form:

$$y_i = x_i \beta + u_i, \qquad i = 1, \dots, n.$$

- (a) What are the properties of OLS with $E(x_i u_i) \neq 0$?
- (b) A researcher proposes the following test of orthogonality:
 - i. Calculate the OLS residual $\hat{u}_i = y_i x_i b$.
 - ii. Define $\lambda = \sum_{i=1}^{n} x_i \hat{u}_i$.
 - iii. If $\lambda \approx 0$, do not reject $H_0: E(x_i u_i) = 0$. Otherwise, reject H_0 .

What will happen if the researcher uses this test?

(c) The researcher decides to try to find an instrumental variable and use IV to estimate β . Consider the following instrument: use the computer to randomly generate

$$z_i \stackrel{\text{i.i.d.}}{\sim} N(0,1).$$

Will the IV estimator based on z_i be consistent? Justify your answer by taking the probability limit of the IV estimator.

3. An individual decides to migrate if his/her lifetime expected utility from staying at the current location, u_{ip} , is less than or equal to his/her lifetime expected utility from migrating, u_{im} , minus the migration cost c_i . Assume that

$$u_{ip} = x'_{ip}\beta_p + \epsilon_{ip}, \tag{1}$$

$$u_{im} = x'_{im}\beta_m + \epsilon_{im}, \tag{2}$$

$$c_i = z_i \gamma + u_i. (3)$$

where x_{ip} , x_{im} , and z_i are observed variables. Suppose x_{ip} and x_{im} include the individual's education, experience, age, race, and gender, and local unemployment rates and average wages in the different locations. Variables in z_i include whether the individual is self-employed and whether he/she has recently changed industry of employment. The model disturbances satisfy

$$\left(egin{array}{c} \epsilon_{ip} \ \epsilon_{im} \ u_i \end{array}
ight) |x_{ip},x_{im},z_i \overset{ ext{i.i.d.}}{\sim} N(0,\Sigma),$$

where Σ is a symmetric positive definite matrix. We observe x_{ip}, x_{im}, z_i , and an indicator for whether or not the individual chose to migrate.

- (a) Construct a probit model for the migration decision of individual i.
- (b) Write down the log-likelihood function for a sample of n individuals (assuming independence across observations).
- (c) Describe as precisely as possible the maximum likelihood estimator for this model. Are all the coefficients in equations 1, 2, and 3, consistently estimable?
- (d) What are the asymptotic properties of the maximum likelihood estimator in part (c)? (You do not need to provide formal proofs, but justify your reasoning.)