Department of Economics Spring 2014
UCLA

Comprehensive Examination

Quantitative Methods

The exams consists of three part. You are required to answer all the questions in all the parts.
Good luck!



Part T - 203A

1. The probability density of the random variable Y conditional on the random variable
X =z is known to be of the form

Mz) e @y if  y >0

el = { g

otherwise

where A\(x) is a function whose values are known to be nonnegative and bounded but it
is otherwise unknown.

(a)

Suppose that X is known to have a binomial distribution with unknown parameters
(n,p). That is

Pr(X =x) = ( Z) P (1—p)" z=0,..n

Determine what can be identified from the distribution of (Y, X). Justify your an-
Swer.

Suppose that X is continuously distributed on the interval [1,2] and it is known
that for some positive, monotone increasing, and bounded, but otherwise unknown,
function m(x) and for some positive but otherwise unknown parameter «

Ax) =a+m(x)

Determine what can be identified from the distribution of (Y, X). Justify your an-
swer. If a function or parameter is not identified, provide additional conditions
under which it is identified and justify your answer.

Suppose now that

1

CEY|X =1]
where 7 is a random variable distributed independently of X with an unknown
strictly increasing distribution function £}, and that Y and n are not observed.

Z -1

Suppose that X is continuously distributed with support R and that the only objects
that are observed are the density of X and

Pr(Z > 0| X =x)

for all x in the support of X. Determine what functions and parameters can be
identified from these observed objects. If a function or parameter is not identified,
provide additional conditions under which it is identified and justify your answer.



2. The random variable Y is determined by the values of random variables X, 3, and ¢
according to the model
Y=p8X+¢

where (X, ,¢) is distributed Normal with mean (ux, ps,it:) and variance-covariance
matrix
0xx O0xp OXe
N=| oxs Ops Ope
OXe 03¢ Oce

(a) Derive an expression in terms of the parameters, and as simple as possible, for the
probability that ¥ > 0 conditional on X = .

(b) Derive an expression in terms of the parameters, and as simple as possible, for the
probability that Y > 0.

(c) Obtain an expression for the mean of Y.
(d) Obtain an expression for the variance of Y.

(e) Suppose that ¢ is known to be distributed independently of the vector (X, 5). What
can you say about the values of the mean and variance parameters of (X, 3,¢)7 In
this case, are $ and ¢ independent conditional on X7 Explain.

(f) Suppose that X and f are independently distributed. Let A denote the intersec-
tion of the following three events: (X >1), (8>1), and (X < 2). Obtain an
expression, in terms of the parameters, for the probability of A.

Note 1: You may use ¢(u) and ®(u) to denote, respectively, the density and cumulative
distribution of a N (0, 1) random variable.

Note 2: You might find useful to recall that the Moment Generating Function of a random
vector W distributed N(u, X)) is My (t) = el n+1/2¢%t,



Part II - 2038

1. No deriwation is required for the two short questions below; your derivation will not be
read anyway.

(a) Suppose that
yi =B + &
with (g, ;)" i = 1,...,n iid., and E [2,6;] = 0. We do NOT assume that F [¢2| ;]
is constant. You are given the following data set with n = 3:

(R 11

Y2 w2 | = | 1 2

Ys XT3 3 1

Using the asymptotic normality of the OLS estimator as well as White’s heteroscedas-
ticity corrected estimator of the asymptotic variance, produce the 95% confidence
interval of 3. If your answer involves a square root, try to simplify as much as you
can.

(b) We are given the following model:

¢=a;-p+asy-y+e (Demand)
¢"=Bi-p + P x+ € (Supply)
g=q¢'=q (Equilibrium)

We assume that the random vector (y,z)" is independent of the random vector
G e“”),. We also assume that E [¢!] = E[¢°] = 0. We have identified

Elply,x] =y —2x
Elqly,z] =3y + 5z

What are numerical values of 3 and ;7

2. Your answer to this question will be evaluated based on the logical validity and coherence
of your argument.

Suppose that y1,...,y, are independent and identically distributed scalar random vari-
ables. Their common distribution is N (6, 0?). Using the Gauss-Markov Theorem stated
below, derive the best linear unbiased estimator of 6. (You do not need to prove the
Gauss-Markov Theorem, but you should argue why this question satisfies the premises of
the theorem. No other argument will be accepted.)

Gauss-Markov Theorem: If (i) y = X + &; (ii) X is a nonstochastic matrix; (iii) X
has a full column rank (Columns of X are linearly independent); (iv) E[¢] = 0; (iv)
E [e€'] = 021, for some positive number ¢?; then OLS is BLUE.

4



3. Your answer to this question will be evaluated based on the logical validity of your argument
as well as the numerical accuracy.

Suppose that

yi =i+ &
We observe (y;, 75, 2) ,i=1,...,niid. We assume that (1) the random vector (z;, z;)" is
independent of ;; (2) Ele;] =0 and E ] =1; 3) E[z}] = E[2?] =1 and F [5;2;] = 1.
Derive the asymptotic distribution of

Vn (50Ls - 5)
Vn (6[\/ - 5)
where . .
B\OLS _ Zizl TiYi BIV _ Zizl ZiYi
iy Doy At
Make sure that the asymptotic variance matrix consists of concrete numbers; if you stop

with abstract formulae or your numbers are incorrect, your answer will be understood to
be at best 30% complete.



Part III - 203C

1. Suppose that {X;}; is a second order auto-regressive process, i.e.
1
Xt = GoXi1 + §Xt—2 + U,

where u; ~i.1.d.(0,02), 02 > 0 and u; has finite 4-th moment. We have n observations on
Xt: {Xt}?zl'

(a) Suppose |@,| < 1. Is {X;}; a weakly stationary process? Justify your answer.

(b) Suppose that ¢, = 0. Derive the auto-covariance function of {X;}.

(c) Suppose that ¢, = 0 and we know the value of ¢,. Derive the long-run variance
(LRV) of {X,};. Provide a LRV estimator which is root-n consistent.

(d) Suppose that |¢,| < 3. Show that ¢, is identified by the following moment condition:

E {(Xt 9 Xi1 — 5 X)X [ =0 1)

(e) Suppose that ¢, = 0 and we do not know the value of ¢,. From the moment condition
(1), we can construct the method of moment (MM) estimator of ¢, as

n

> (X —1Xi0) X

> X
t=2

Derive the asymptotic distribution of the above MM estimator.

(f) Suppose that ¢, = 0 and we do not know the value of ¢,. Show that ¢, is identified
by the moment conditions:

( E[(Xi — ¢oXi-1 — 2X;9) Xy 1] ) _ ( 0 ) |

E [(Xt - ¢0Xt—1 - 2Xt—2)Xt_2] 0 (2)

Find the asymptotic variance of the optimally weighted GMM estimator of ¢, based
on the moment conditions (2).

(g) Compare the asymptotic variances of the optimally weighted GMM estimator and
the MM estimator studied in (e) and explain your finding.



2. Consider the following model
Xt = Oéot + Uy with U = \/ZEt (3)

where &; ~1.1.d.(0, 02) with 02 > 0, ; has finite 4-th moment, and «, and o2 are unknown
parameters. We have n observations on X;: {X;}7 .

(a) Derive the asymptotic distribution of the LS estimator of «,:

N P otX
G, = Zz—t (®)
t=1

(b) Construct a consistent estimator 62,, of 62. Derive the asymptotic distribution of
your estimator.

(c) Using the estimator 672, of 02, one can construct an estimator of the variance of u,
as o.,, = to2,. Consider the generalized LS (GLS) estimator of a,:

~ Zn: tXta\JQn
Qglsn = tnl—y\,; (5)
Zt:lt O-utﬂ
Derive the asymptotic distribution of @ ,. Compare the asymptotic variances of
the LS estimator and the GLS estimator and explain your findings.



Some Useful Theorems and Lemmas

Theorem 1 (Martingale Convergence Theorem) Let {(X;, ;) }icz, be a martingale in
L. If sup, I/ [|Xt|2] < 00, then X,, — X4 almost surely, where X, is some element in L2.

Theorem 2 (Martingale CLT) Let {X:,,Fi,} be a martingale difference array such that
E[|Xt7n|2+5] < A < oo for some § >0 and for all t and n. If 52 > & > 0 for all n sufficiently
large and 31 | X2, — 72 —, 0, then n2 X, /T, —q N(0,1).
Theorem 3 (LLN of Sample Variance) Suppose that Z; is i.i.d. with mean zero and E[Z3] =
a% < 0. Let X; = Ziio orli_r, where @ is a sequence of real numbers with Ziio kgoi < 00.
Then

1 n

- D XiXin —p Tx(h) = E[X, Xi]. (6)

t=1

Theorem 4 (Donsker) Let {u;} be a sequence of random variables generated by uy =y 1o o PrEt—k =
(L), where {e;} ~ iid (0,02) with finite fourth moment and {¢y} is a sequence of constants
with Y2 ok |pk| < 0o. Then B, ,(-) = ns 21[51]1 ur —q AB(+), where A = g.¢(1).

Theorem 5 For any natural number n, we have

—~ n(n+1) —~ , nn+1)2n+1)
’;k_ : and;k— : .



