Rusa 323 954 1542 Cell 310 893 4235

Department of Economics UCLA

Spring 2009

Comprehensive Examination

Quantitative Methods

Answer Questions 1 and 2 in Part I, Questions 1, 2, and 3 in Part II, and Questions 1, 2, 3, and 4 in Part III. Good luck!

Part I (based on Econ 203a)

Question 1: In a given population, individuals have to perform a given task that requires two steps. The time that it takes to an individual with characteristics Z to perform the task is X+Y, where X is the time for the first step and Y is the time for the second step. The joint density of (Y,X), for an individual with characteristics Z=z, where z>0, is given by

$$f_{Y,X|Z=z}(y,x) = c e^{-(x+y)/z}$$
 if $y > 0$, $x > 0$
= 0 otherwise

Denote the marginal density of z by $f_Z(z)$; $f_Z(z) > 0$ when z > 0 and $f_Z(z) = 0$ otherwise.

- (a) What is the value of the constant c, for an individual with characteristics Z = z (z > 0)? Explain.
 - (b) Are X and Y independent, conditional on Z = z? Explain.
 - (c) Let H = X + Y. Derive the density of H, conditional on Z.
- (d) Calculate the expectation and variance of H, conditional on Z = z, when z > 0.
- (e) Can you use your answer to (b) to determine whether X and Y are independent? Explain in detail how you would determine whether X and Y are independent.
- (f) Let $W_1 = \min\{X, Y\}$ and $W_2 = \max\{X, Y\}$. Determine the distribution of (W_1, W_2) conditional on Z.

Question 2: The value, V, that a particular individual derives from a particular work is given by

$$V = W + m(X) + \beta E + \varepsilon$$

where W is the net income derived from the work, which may be positive or negative, X is a vector of characteristics of the work and of the individual, E is experience, and ε is an unobserved random variable. Let Y=1 if the individual works and Y=0 otherwise. Assume that an individual works if $V \geq 0$. Otherwise, he/she does not work. Assume that the function m and the value of the parameter β are unknown. Assume also that ε is distributed independently of (W, X, E), with a continuous, strictly increasing distribution F_{ε} , and that (W, X, E) has an everywhere positive density.

- (a) Derive the conditional probability that an individual with (W, X, E) = (w, x, e) works, as a function of (w, x, e) and the unknown functions, parameter, and distribution.
- (b) Suppose that it is known that at some value x^* of X, $m(x^*) = 0$. Can you identify $(m, \beta, F_{\varepsilon})$ from the distribution of Y given (W, X, E)? If your answer is yes, prove it. If your answer is no, specify additional conditions under which you can identify $(m, \beta, F_{\varepsilon})$, and prove that with those additional conditions, $(m, \beta, F_{\varepsilon})$ is identified.
- (c) Suppose now that the value of W for any particular individual is unobserved. In particular, assume that the only observable distributions are the distribution of Y conditional on (X, E) and the distribution of W conditional on (X, E). Suppose that the distribution of W conditional on (X, E) is discrete with only two points of support, w^H and w^L . Denote the probability that $W = w^H$ conditional on (X, E) = (x, e) by $p_{x,e}^H$. What can you say about the probability that an individual with $(W, X, E) = (w^H, x, e)$ works? Explain.

Part II (based on Econ 203b)

Question 1:

Suppose that you are given a linear regression model

$$y_i = x_i \beta + \varepsilon_i$$

where $E[z_i\varepsilon_i] = 0$. You do not observe the triplet (y_i, x_i, z_i) in any data set. You do have the following two data sets though:

- 1. (y_i, z_i) iid $i = 1, \ldots, n_1$
- 2. (x_j, z_j) iid $j = 1, \ldots, n_2$

Assume that $n_1, n_2 \to \infty$, and construct a consistent estimator of β . Prove why your estimator is consistent. In order to distinguish the three data sets, write $\left(y_i^{(1)}, z_i^{(1)}\right)$ for observations in the first data set, and $\left(x_j^{(2)}, z_j^{(2)}\right)$ for observations in the second data set.

Question 2:

Suppose that we are given iid (x_i, u_i) i = 1, ..., n. We have

$$(x_i, u_i)' \sim N\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{cc}4&0\\0&2\end{array}\right]\right).$$

We observe (x_i, y_i) i = 1, ..., n such that

$$y_i = x_i \beta + \varepsilon_i$$

where $\varepsilon_i = x_i u_i$. Let

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

What is the asymptotic distribution of $\sqrt{n}(\widehat{\beta} - \beta)$? You are expected to provide a numerical characterization of the asymptotic distribution. If you simply provide an analytic formula, you will be given no credit whatsoever.

Question 3:

Consider a simple binary response model

$$y_i = \begin{cases} 1 & \text{if } \beta - \varepsilon_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where $\varepsilon_i \sim N(0,1)$. Calculate the Fisher information for β , and use it to characterize the asymptotic variance of the MLE $\hat{\beta}$ for β .

Now, consider another estimator

$$\widetilde{\beta} = \Phi^{-1}\left(\overline{y}\right)$$

for β , where \overline{y} denotes the sample average of y_i and Φ^{-1} denotes the inverse of the CDF of N (0,1). Prove that $\widetilde{\beta}$ is consistent and asymptotically normal. Also derive the asymptotic variance of $\widetilde{\beta}$ using the Delta method. How does the asymptotic variance of $\widetilde{\beta}$ compare with that of $\widehat{\beta}$? Hint: The derivative of Φ^{-1} is given by the expression

$$\frac{d\Phi^{-1}(x)}{dx} = \frac{1}{\phi(\Phi^{-1}(x))}$$

where ϕ denotes the inverse of the CDF of N(0,1).

Part III (based on Econ 203c)

Question 1: True/Questionable/False? (No points are given for just stating true/questionable or false. The explanation is what counts.)

- a) In general, in HAC estimation, the bandwidth S_T has to grow to infinity as the sample size T goes to infinity to guarantee that the variance of the HAC estimator converges to zero.
- b) In the standard linear regression model with errors distributed as t with v degrees of freedom, OLS is more efficient than LAD.
 - c) If $X_n = O_p(n^{\delta})$ for some $\delta > 0$ it can not be the case that $X_n = o_p(1)$.
- d) In a linear regression model with omitted regressors, OLS estimation is inconsistent.

Question 2: Take the linear model $y_i = x_i \beta + e_i$, $E(e_i|x_i) = 0$, where x_i and β are scalars.

- a) Show that $E(e_i x_i) = 0$ and $E(e_i x_i^2) = 0$.
- b) Is $z_i = (x_i, x_i^2)$ a valid instrumental variable for estimation of β ?
- c) Write down the formula for the 2SLS estimator of β using z_i as an instrument for x_i (the formula of the 2SLS estimator can always be written down even if the instruments were invalid). Do 2SLS and OLS differ here?
- d) Find the efficient GMM estimator of β based on the moment condition $E(z_i(y_i x_i\beta)) = 0$. Does it differ from 2SLS and/or OLS?

Question 3: Consider the linear IV model $y_i = x_i \beta + u_i$, $x_i = Z_i' \pi + v_i$, where $\beta \in R$, $Z_i \in R^k$, $EZ_i v_i = 0$, and $Eu_i = Ev_i = 0$.

a) The goal is to construct a confidence interval (CI) for β . Derive the asymptotic distribution of the statistic

$$AR(\beta) = n^{-1} \sum_{i=1}^{n} g_i(\beta)' [n^{-1} \sum_{i=1}^{n} g_i(\beta) g_i(\beta)']^{-1} \sum_{i=1}^{n} g_i(\beta), \tag{1}$$

where $g_i(\beta) = Z_i(y_i - x_i\beta)$ under both i) $\pi \neq 0$ fixed and ii) $\pi = \pi_n = h/n^{1/2}$ for a fixed $h \in \mathbb{R}^k$. Describe then how you would use this statistic to construct a CI for β . Intuitively speaking, what are weak instruments? Explain why this CI has asymptotic coverage probabilities that are not affected by weak instruments.

b) Assume now conditional homoskedasticity and k=1. Derive the asymptotic distribution of the 2SLS estimator when as $n\to\infty$ we have $\pi=\pi_n=h/n^{1/2}$. Explain why your result sheds light on the fact that in Monte Carlo simulations we found that a t test may overreject the true null hypothesis $H_0:\beta=\beta_0$ when instruments are weak.

Question 4: In the context of an ARMA(p,q) model, define what we mean by a causal solution. For the linear difference equation $y_t = y_{t-1} + u_t$ with u_t iid $N(0, \sigma^2)$, is there a causal solution?