Quantitative Methods Comprehensive Examination

Instructions: Answer **ALL questions** in Parts I, II, and III. Use a separate answer book for each Part. You have four hours to complete the exam.

PART I (Based on ECON203A)

1. (10 pt.) Let X denote a random vector with p.d.f. $f(x;\theta) = L(\theta;x)$. Assume that $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$. Let

$$C \equiv \left\{ x : \frac{L(\theta_1; x)}{L(\theta_0; x)} \ge k \right\},\,$$

where k is chosen in such a way that

$$P[X \in C; H_0] = \alpha.$$

Prove that C is the best critical region of size α for testing H_0 against the alternative H_1 .

2. (10 pt.) Given a random vector X with pdf $f(x;\theta)$, consider an unbiased estimator Y = u(X) of θ , where θ is a scalar. Suppose that $E[Y] = \theta$. Prove that we have

$$\operatorname{Var}(Y) \ge -\frac{1}{E\left[\frac{\partial^2 \log f(X;\theta)}{\partial \theta^2}\right]}$$

3. (10 pt.) Suppose that we have

$$y_{n\times 1} = \underset{n\times k_{k\times 1}}{X}\beta + \underset{n\times 1}{\epsilon}$$

where X is nonstochastic with full column rank, $E[\epsilon] = 0$ and $E[\epsilon \epsilon'] = \sigma^2 I_n$. Prove that

$$\widehat{\beta} = (X'X)^{-1} X'y$$

has the smallest possible variance matrix among all the estimators of β that takes the form c = Cy such that $E[c] = \beta$.

- 4. (10 pt.) Suppose that $U \sim U(0,1)$. Given an arbitrary cdf F, prove that $Y \equiv F^{-1}(U)$ has a cdf equal to F.
- 5. (10 pt.) Suppose that X_i are i.i.d. such that $E\left[\exp\left(tX_i\right)\right] = \exp\left(\frac{t^2}{2}\right)$. Derive the asymptotic distribution of

$$\sqrt{n}\left(n^{-1}\sum_{i=1}^n X_i^4\right)^2 \times \left(n^{-1}\sum_{i=1}^n X_i\right)$$

PART II (Based on ECON203B)

1. Suppose that you have n independent observations on (x_i, y_i) from the model

$$y_i = x_i \beta + \varepsilon_i$$
 $i = 1, ..., n$

where $\varepsilon_i \sim N(0, \exp(w_i \gamma))$ with w_i a q-dimensional subvector of x_i .

- (a) Derive the GLS estimator of β assuming γ is known.
- (b) Derive the ML estimator of β assuming γ is known. How is it related to the infeasible GLS estimator?
- (c) State conditions under which the infeasible GLS estimator is consistent and derive its asymptotic distribution.
- (d) Describe the feasible GLS approach when γ is unknown.
- (e) Describe the ML estimator of β assuming γ is unknown. How is it related to the feasible GLS estimator?
- 2. Suppose that we collect Social Security data in order to analyze the effect of different demographic characteristics on individuals' earnings. The latter however are top-coded at \$100,000, i.e. earnings that are above \$100,000 are reported as 100,000. Set up an econometric model that accounts for top-coding. Suggest three estimators that estimate the model and discuss their relative merits. How would you estimate the marginal effect of a specific characteristic and how would you construct standard errors for your estimate?

PART III (Based on ECON203C)

1. Consider the neo-classical regression model

$$y_i = x_i'\beta + w_i^*\gamma + u_i \qquad (i = 1, \dots, n)$$

where β is a $k \times 1$ vector of parameters, and γ is a $p \times 1$ vector of parameters. Suppose that

$$E[x_i u_i] = 0,$$

$$w_i = w_i^* + v_i,$$

with

$$E[v_i u_i] = 0.$$

Suppose also that there exists a $p \times 1$ vector z_i such that

$$z_i = g\left(w_i^*\right) + \varepsilon_i,$$

for some known $p \times 1$ vector valued function $g(\cdot)$.

- (a) Demonstrate whether or not the vector β be consistently estimated by a least-squares regression.
- (b) Propose an instrumental variable estimator for β using z_i as a vector of instruments. Provide all the assumptions needed for z_i to be a valid vector of instruments. Justify your answer as precisely as possible.
- (c) Under the condition in (b), consider the following estimation procedure: (i) Estimate β from a regression of y on X; and (ii) Compute $\hat{y} = My$ (where $M = I X(X'X)^{-1}X'$) and estimate γ by computing the instrumental variable estimator from a regression of \hat{y} on w, using z as the instrumental variable for w.
- (d) Compare the estimators for γ from (b) and (c). Explain the difference and/or the similarity.

2. Consider the non-linear model given by

$$y_i = g\left(x_i'\beta_0\right) + \varepsilon_i,$$

for i = 1, ..., n. Define the following moment equations:

$$\varphi_{1}(y_{i}, x_{i}, \beta) = (y_{i} - g(x'_{i}\beta)) \frac{\partial g(x'_{i}\beta)}{\partial \beta}
\varphi_{2}(y_{i}, x_{i}, \beta) = (y_{i} - g(x'_{i}\beta)) h(x_{i}),
\varphi_{3}(y_{i}, x_{i}, \beta) = (y_{i} - g(x'_{i}\beta)) \left(\frac{\partial g(x'_{i}\beta)}{\partial \beta}\right)^{2},$$

where

$$h\left(x_i
ight) = \left(egin{array}{c} rac{\partial g\left(x_i'eta
ight)}{\partialeta}\ \left(rac{\partial g\left(x_i'eta
ight)}{\partialeta}
ight)^2 \end{array}
ight),$$

and the notation λ^2 for a vector $\lambda = (\lambda_1,...,\lambda_p)'$ is simply $\lambda = (\lambda_1^2,...,\lambda_p^2)'$.

- (a) What does one need to assume about ε_i for $g(x_i'\beta_0)$ to be the true conditional mean of y_i , conditional on x_i .
- (b) Assume now that the conditions in (a) are satisfied. Show that

$$\begin{split} E\left[\varphi_{1}\left(y_{i}, x_{i}, \beta_{0}\right)\right] &= 0, \\ E\left[\varphi_{2}\left(y_{i}, x_{i}, \beta_{0}\right)\right] &= 0, \quad \text{and} \\ E\left[\varphi_{3}\left(y_{i}, x_{i}, \beta_{0}\right)\right] &= 0. \end{split}$$

- (c) Propose optimal GMM estimators for β_0 based on $\varphi_1(y_i, x_i, \beta)$ and $\varphi_2(y_i, x_i, \beta)$. Denote the estimators by $\widehat{\beta}_1$ and $\widehat{\beta}_2$, respectively.
- (d) Provide the asymptotic properties for the estimators $\widehat{\beta}_1$ and $\widehat{\beta}_2$ defined in (b).
- (e) Which of the two estimators would you prefer, $\widehat{\beta}_1$ or $\widehat{\beta}_2$? Justify your answer.
- (f) Consider now a GMM estimator based on $\varphi_3(y_i, x_i, \beta)$, and denote this estimator by $\widehat{\beta}_3$. Which estimator would you prefer, $\widehat{\beta}_2$ or $\widehat{\beta}_3$? Justify your answer.