Quantitative Methods Comprehensive Examination

This is a four hour closed-book examination. There are three parts in this exam. Please answer **ALL** parts of the exam. Use separate exam book for each of the three sections. Calculators, or any other electronic devices, are not allowed.

Part I.

1. Suppose that a random variable X has the PDF $f_{X}\left(x\right)$ such that

$$f_X(x) = \frac{\exp(-\theta)\theta^x}{x!}$$
 $x = 0, 1, 2, \dots$

Compute the Fisher Information for θ .

- 2. Let Z_n denote some sequence of random variables such that $\sqrt{n}(Z_n-1) \stackrel{d}{\to} N(0,4)$. Derive the asymptotic distribution of $\sqrt{n}(Z_n^2-1)$.
- 3. Suppose that $X_i \sim N\left(\mu_i, \sigma_i^2\right)$ are independent of each other. Show that $\sum_{i=1}^n a_i X_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$. Hint: The moment generating function of $N\left(\mu, \sigma^2\right)$ is equal to $\exp\left(\mu t + \frac{\sigma^2}{2}t^2\right)$.
- 4. Suppose that $X_1, X_2, \ldots, X_{100}$ are i.i.d. with PDF equal to

$$\Pr[X_i = y] = \frac{\theta^y e^{-\theta}}{y!}, \quad y = 0, 1, 2, \dots$$

(a) Show that

$$E\left[X_i^2\right] = \theta + \theta^2$$

Hint: Recall that $E[X_i] = \text{Var}(X_i) = \theta$.

(b) You found that

$$\sum_{i=1}^{100} X_i^2 = 600$$

Compute the Method of Moments estimator for θ .

Part II.

- 1. Suppose that we have data z distributed according to a density $f(z, \theta)$ that is characterized by an unknown parameter vector $\theta \in \Re^k$.
 - (a) Write down the form of Wald's test statistic for testing a general nonlinear hypothesis of the form $\gamma(\theta) = 0$, where $\gamma()$ is a q-valued function with a Jacobian of full row rank q and derive the asymptotic distribution of the test statistic stating appropriate theorems and assumptions that you use in your proof.

- (b) Derive the form of the Wald statistic in the case of the generalized normal linear regression model $y = X\beta_0 + \varepsilon$ where $\varepsilon \sim N(0,\Omega)$ for testing a set of q linearly independent restrictions of the form $\Gamma\beta_0 = \gamma$.
- 2. Suppose that you have n independent observations $\{y_i\}_{i=1}^n$ distributed according to the density

$$f\left(y_{i}\right)=\left(\frac{1}{x_{i}\beta}\right)\exp\left(-\frac{y_{i}}{x_{i}\beta}\right) \qquad \qquad y_{i}>0$$

where x_i is a k-dimensional vector of constants and β is an unknown vector of parameters.

- (a) Verify that $E(y_i) = x_i \beta$ and $V(y_i) = (x_i \beta)^2$.
- (b) Derive the Maximum Likelihood estimator of β .
- (c) Derive the Generalized Least Squares estimator of β .
- (d) Derive the asymptotic distribution of the estimators of parts (b) and (c).

Part III.

1. Consider the two-equation linear model given by

$$y_{1i} = x'_{1i}\beta_1 + u_{1i},$$

 $y_{2i} = x'_{2i}\beta_2 + u_{2i},$

where x_{1i} and x_{2i} are $K_1 \times 1$ and $K_2 \times 1$ vectors of regressors, respectively, β_1 and β_2 are the corresponding unknown vectors of parameters. Assume that $K_2 > K_1$. Let $u_i = (u_{1i}, u_{2i})'$, and assume that

$$u_i|x_{1i}, x_{2i} \sim \text{i.i.d.} (0, \Sigma_u)$$
.

- (a) Describe how to obtain the most efficient estimates for β_1 and β_2 .
- (b) Provide a consistent estimate for Σ_u .
- (c) Suppose that $Cov(u_{1i}, u_{2i}) = \sigma_{12}$, where σ_{12} is a known parameter (i.e., it is a number that the econometrician knows). How would it change the answer in (1)?
- (d) Suppose that all the variables in x_{1i} are also in x_{2i} , that is, $x_{1i} \subset x_{2i}$ for all i = 1, ..., n. How would it change the answer in (1) with respect to the parameter vector β_1 and with respect to the parameter vector β_2 ?
- (e) Suppose now that

$$y_{1i} = x'_{1i}\beta_1 + \gamma y_{3i} + u_{1i},$$

 $y_{2i} = x'_{2i}\beta_2 + u_{2i}.$

Provide a methods for consistently estimating β_1 and β_2 .

2. Consider the binary discrete choice model given by

$$\Pr(y_i = 0) = \frac{\exp(x_i'\gamma)}{1 + \exp(x_i'\gamma)},$$

for
$$i = 1, ..., n$$
.

- (a) Provide the MLE for γ , say $\widehat{\gamma}_n$.
- (b) Show that the MLE estimator can be viewed as a Method of Moments (GMM) estimator.
- (c) Compute the exact asymptotic covariance for $\hat{\gamma}_n$ and provide a consistent estimate for the asymptotic covariance. Justify your answer.
- (d) Consider the weighted estimator, say $\widehat{\gamma}_n^W$, obtained by

$$\min_{\gamma} \sum_{i=1}^{n} \frac{\left(y_{i} - \operatorname{Pr}\left(y_{i} | x_{i}\right)\right)^{2}}{\operatorname{Pr}\left(y_{i} | x_{i}\right)\left(1 - \operatorname{Pr}\left(y_{i} | x_{i}\right)\right)}.$$

Is $\widehat{\gamma}_n^W$ consitent estimator for γ ? Justify your answer.

(e) Assume now that the estimator obtained in (d) is consistent estimator for γ . Would you prefer that estimator on the one obtained in (a)? Justify your answer.