UCLA Economics

Fall 2002 Quantitative Methods Comprehensive Examination

There are three sections with two questions in each section. Please answer all the questions; use a separate blue book for each of the three sections. For your information, the .90 and 0.95 quantiles of the Chi-squared distribution with one degree of freedom are 2.78 and 3.84.

Part I.

- 1. Let X be a binary variable with Pr(X = 1) = 2/3 and Pr(X = 0) = 1/3. Conditional on X = x, the random variable Y has an Poisson distribution with arrival rate $\theta + x$.
 - 1. What is the mean of Y.
 - 2. What is the probability that X = 1 given Y = 0.
 - 3. Suppose that $(X_1, Y_1), \ldots, (X_N, Y_N)$ are a random sample from this distribution. What is the maximum likelihood estimator for θ ?
 - 4. What is the large sample variance for the maximum likelihood estimator?
 - 5. Construct a moment estimator for θ based on the the expected value of Y. What is the variance of this estimator? How does it compare to the variance of the maximum likelihood estimator?

Note: the probability mass function for a Poisson random variable Z with parameter λ is, for nonnegative integer z:

$$f_Z(z;\lambda) = \lambda^z \exp(-\lambda)/z!$$

2. Let X_1, X_2, \ldots, X_N be a random sample from the density

$$f(x;\lambda) = \lambda^{-1}(1+x)^{-\left(\frac{\lambda+1}{\lambda}\right)}$$

for x > 0 and $\lambda > 0$.

- 1. Find the maximum likelihood estimator for λ .
- 2. Find the maximum likelihood estimator for $1/\lambda$.
- 3. Find the Cramer-Rao bound for unbiased estimators of λ .
- 4. Is the maximum likelihood estimator for λ equal to the minimum variance unbiased estimator for λ ? Is the maximum likelihood estimator for $1/\lambda$ equal to the minimum variance unbiased estimator for $1/\lambda$?
- 5. Suppose the maximum likelihood estimator for λ is equal to 1, and the number of observations is 100. Test the hypothesis $\lambda = 0.9$ at the 5% level using a likelihood ratio test.
- 6. Repeat the test using a Wald test.

Part II.

1. For the k-variate linear regression model,

$$y_i = x_i \beta + \varepsilon_i$$

where $E(x_i'\varepsilon_i) = 0$ show that the OLS estimator is consistent and asymptotically normal assuming that you have a random sample on (y_i, x_i) of size n. Provide a consistent estimator of its variance-covariance matrix. Is it unbiased? Make sure to state the theorems used in obtaining your results. Do any of your results change if in addition you know that ε_i is distributed normally conditional on x_i with mean zero and constant variance σ^2 ?

2. Consider the model

$$C_t = \alpha + \beta Y_t + \gamma C_{t-1} + \varepsilon_t \qquad |\gamma| < 1; \qquad t = 1, ..., T \qquad (1)$$

where C_t and Y_t are consumption and income, respectively, at time t. It is assumed that $\{\varepsilon_t\}$ is an i.i.d. zero-mean process with finite variance σ_{ε}^2 , and $\{Y_t\}$ is an i.i.d. process with finite mean μ_Y and finite variance σ_y^2 which is independent of $\{\varepsilon_t\}$. In this model, the long-run marginal propensity to consume is defined as $\delta = \frac{\beta}{1-\gamma}$.

- 1. Find the mean and variance of $\{C_t\}$.
- 2. Does OLS on (1) produce consistent estimates of α , β , and γ ? Are the OLS estimators unbiased? Justify your answer.
- 3. Derive the (joint) asymptotic distribution of the OLS estimators of part (b), assuming that appropriate conditions hold so that you can apply a central limit theorem.
- 4. Consider estimating δ by $\hat{\delta} = \frac{\hat{\beta}_{OLS}}{1 \hat{\gamma}_{OLS}}$. Is it unbiased, consistent, asymptotically normal? Justify your answer.
- 5. Using data on consumption and income from 1963 to 1972, we estimated (1) by OLS which produced the following results:

	Coefficient	Standard Error	$t-\mathrm{ratio}$
Constant	-7.69575	11.44	-0.672
Y_t	0.400147	0.06272	6.380
C_{t-1}	0.380728	0.09479	4.017
Estimated	Covariano	e Matrix of Es	timates

$$\begin{array}{cccc} & \text{Constant} & Y_t & C_{t-1} \\ \text{Constant} & 130.972 & & & \\ Y_t & -0.43868 & 0.00393 & & \\ C_{t-1} & 0.54959 & -0.0058961 & 0.00898 \\ \text{Test the hypothesis that } \delta = 1. \end{array}$$

Part III.

- 1) Assume that $y_t = X_t \beta + \rho y_{t-1} + \varepsilon_t$ where $\varepsilon_t = \alpha_1 \omega_t + \alpha_2 \omega_{t-1}$. Furthermore, the ω 's are independently and identically distributed and $\mathbb{E}\{\omega_t | X_\tau\} = 0$ for all t and τ . However, the exact distribution of the ω 's is unknown.
 - a) Show that the OLS regression of y_t on X_t and y_{t-1} is an inconsistent estimator for β and ρ ?
 - b) Construct the most efficient, consistent estimator of β and ρ that you can.
- 2) Assume that $q_i = X_i \beta + \varepsilon_i$ determines the quantity of a particular security that the i^{th} individual desires to buy, where the error terms are normal random variables that are independent across individuals i = 1, 2, ..., n.
 - a) In the first period, nobody is allowed to short the stock (i.e. you cannot purchase a negative quantity). Given data on sales for these n individuals, how would you estimate β? Be explicit.
 - b) In the second period, agents can short the stock. Given data only from this second period on the same n individuals, how would you estimate β ? Be explicit.
 - c) How would you combine the data from the two periods to construct an efficient estimator of β ? Be explicit and note that although the error terms are independent across individuals, they may correlate through time for a given individual.
 - d) How would you test the hypothesis that peoples' behavior (as represented by β) remains the same across the two periods? Again, be explicit.