Spring 2016

1. Equilibrium with Uncertainty

Consider a two-period exchange economy with one good and two consumers.
There are two states of the world s; and so, which are equally likely. At state
s1, consumer 1 is endowed with 2 goods and consumer 2 is endowed with 1 good
At s9, consumer 2 is endowed with 2 goods and consumer 1 with 1 good. In the
first period, a state of the world realizes and nothing else happens. Consumption
occurs only in the 2nd period. Each consumer is an expected utility maximizer
with a log (Bernoulli) utility function v (z) = log . Thus consumer 4’s expected
utility from consumption plan z; = (x;1, %, 2) is given by 0.5log z; 1+0.5log z; o
(x;,s is consumer ¢’s consumption at state s). Answer the following questions.

(a) Find all the Pareto efficient allocations.

(b) Find an Arrow-Debreu equilibrium (remember that it is just a usual
Walrasian equilibrium where goods are state-contingent goods).

Assume that the following two financial assets are available for trading in the
first period for the rest of the questions. Asset A pays out 1 (unit of account)
in both states in the 2nd period. Asset B pays 2 at state s; and 3 at state ss.
Let gx be the price of Asset k for k = A, B.

(c¢) Show that there is an opportunity for arbitrage when (g4, q5) = (3,5).
(d) Find asset prices (g4, ¢p) given which there is no arbitrage opportunity.
(e) Find a financial equilibrium/Radner equilibrium (consumption, asset

holding, prices of the assets and state-contingent goods) that implements the
same allocation as the Arrow-Debreu equilibrium allocation in (b).



Answer for Q1

(a) (2 pts.) Since the consumers have the same Bernoulli utility func-
tion and their preferences are homothetic, the set of Pareto efficient alloca-
tions coincide with the diagonal line of the Edgeworth box: z7 = (3a,3a),
zo = (3(1 —a),3(1 —a)), where a € [0,1]

(b) (2.5 pts.) The equilibrium allocation must be Pareto efficient by the first

welfare theorem. So the equilibrium price ratio Z—i must be 1 by the tangency

condition. In equilibrium, consumer 1 sells 0.5 2unit of good at state s; to
consumer 2 and buys 0.5 unit of good at state s, from consumer 2 so that
his equilibrium consumption is 1.5 at each state. The equilibrium allocation is
xzf = (1.5,1.5) for ¢ = 1,2 with any equilibrium price p* = (pf,p}) such that
pi=p;>0.

(¢) (1.5 pts.) Sell 5 units of Asset A and buy 3 units of Asset B. Since they
are of equal value (= 15), this trade is feasible without incurring any cost in the
first period. Then one can get 1 in state s; and 4 in state s for free.

(d) (1.5 pts.) There is no arbitrage with asset price (g4, ¢p) if and only if
there exists (A1, A2) > 0 (state price) that satisfy the following:

ga = A1+ A2, g = 2M\1 +3X2

For example, pick (A1, A2) = (1,1). Then (ga,q5) = (2,5) satisfies this condi-
tion.

(e) (2.5 pts.) Set the asset prices to (¢a,qp) = (2,5) (any no arbitrage
price would work). Since consumer 1 needs money to purchase goods at state 2,
consumer 1 needs to buy asset B and sells Asset A. So suppose that consumer 1
buys 2 unit of asset B and sells 5 unit of asset A (there are many other quantities
that would work). Then consumer 1 will owe 1 unit of account at state s; and
receive lunit of account at state so. Of course consumer 2 takes the opposite
position and will receive 1 at state s; and owe 1 at state so.To implement the
A-D equilibrium allocation in (b), the price of the good must be 2 at both states
so that 1 unit of account is worth 0.5 unit of good at both states. We know
that the budget set is the same given p; = p3 for A-D equilibrium and given
(qa,q8) = (2,5), py = ph = 2 for financial equilibrium. Hence, given those
prices, it is indeed optimal for each consumer to consume 1.5 units of each good
at both states. Thus (z7, 23, (¢a,q98) ,p1,05) = ((1.5,1.5),(1.5,1.5),(2,5),2,2)
is a financial equilibrium (there are many other equilibria that implement the
same allocation).



2. Equilibrium with Indivisible Goods

We usually assume that goods are divisible: a consumer can consume any
positive amount of any good. But what would happen if goods are indivisible?
Many goods are indeed indivisible in real world. For example, you can buy 1
laptop or 2 laptops, but not 1.2 laptop. Here we consider a simple two good-
two person pure exchange economy where goods are indivisible (Formally the
set of feasible consumption vectors for consumer ¢ is X; = {(k1, k2) |k1, k2 € N}
and consumer ¢’s endowment e; is a pair of natural numbers). Assume that
consumers’ utility functions are linear and strongly increasing in both goods,
ie. u; (z) = a;xi1 + B;x42 with some (o, 5;) > 0.

(a) Write down the conditions for (z7,x3,p*) to be a Walrasian equilibrium
in this economy.

(b) Explain why every Pareto-efficient allocation must be on the boundary of
the Edgeworth box when g—i + g—’;‘ (For question (b)-(d), a graphical argument
would suffice).

(c) Does there always exist a Walrasian equilibrium in this economy? (Hint:
consider using a Pareto-efficient allocation).

(d) Show by an example that there may exist a Walrasian equilibrium in
which the equilibrium allocation is not on the boundary of the Edgeworth box
(hence is not Pareto-efficient by (b)).

(e) Suppose that good 1 is indivisible, but good 2 is divisible as usual. Does
the first welfare theorem hold in this case? If you think so, provide a full proof.
If not, find a counter example.



Answer for Q2

(a) (2 pts.) (a7, 3, p*) is a Walrasian equilibrium if (1) 2 € X; maximizes
consumer ¢’s utility given the budget set, i.e. p*z] < p*e; and x} >; z; for any
z; € X; such that p*z} < p*e;, and (2) the market is clear: 2} + 23 = e; +e2 or
7+ x5 <e+ea.

(b) (2 pts.) Assume that g—i > % without loss of generality. Take any
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interior allocation (z1,22) in the Edgeworth box. Consider a nearby allocation

(2h,25) = (1 + (A1, —D2) 29 + (—=A1,A2)), where A; > 0 is small and sat-
isfies 5+ > z* > 32. Then both consumers are better off at (2, 2%) . (Note:
Here I implicitly assume that you would apply the familiar notion of Pareto-
efficiency (with respect to divisible goods). But you can define Pareto-efficiently
with indivisiblility. Then you have a larger set of Pareto-efficient allocations and
Pareto-efficient allocations may not be on the boundary. It is a perfectly right
answer to mention this.)

(c) (2 pts.) This is case by case. Again assume that Z+ > 32. Then one
Pareto-efficient allocation would be that consumer 1 consumes z; = (r1,0)
(consume all good 1 and consume no good 2) and consume 2 consumes x5 =
(0,72), where ry = ey + eay for £ = 1,2. Suppose that z; is at least as good
as e; for i = 1,2. Draw a straight line between 2’ and e in the Edgeworth
box and consider any price vector p* to make this line the budget line. Then
(2, p*) must be a Walrasian equilibrium. Since consumer ¢’s utility must be
weakly increasing as 4’s consumption moves from e; to z; (because of linear
utility functions) and consumer 4’s consumption cannot go beyond z; along this
budget line, z} is indeed the optimal choice for consumer ¢ for ¢ = 1,2. The
market clearing condition is trivially satisfied in the Edgeworth box.

In general, there may not exist a Warlasian equilibrium. For example, sup-
pose that e; = (1,1) and ez = (9,1). Also assume that (a1,8;) = (2,1) and
(a2, 85) = (2,3). Note that the allocation (z1,x2) = ((2,0),(8,2)) is Pareto-
improving relative to (e1,ez). If &2 > 1, then consumer 1 demands at least one
unit of good 2 (do not sell good 2) and consumer 2 consumes at least two units
of good 2. Hence there is an excess demand for good 2. If £ < 1, then consumer
1 demands at least two units of good 1 and consumer 2 either demand at least
9 units of good 1 (when ﬁ—; < 2) or demand more than 2 units of good 2 (when

]% > %) Again there is an excess demand for good 1 or good 2. So there does

not exist any Walrasian equilibrium.

(d) (2 pts.) The following example shows that there may exist a Walrasian
equilibrium with an interior allocation, which is not Pareto-efficient (even with
respect to the more permissible definition based on indivisibility). Suppose that
consumer 1’s initial endowment is (2,1) and consumer 2’s initial endowment
is (1,2). Also suppose that consumer 1’s utility function is ug (z1,1,21,2) =
x1,1+1,2 and consumer 2’s utility function is us (z2,1,222) = (1 + &) x2,1 +x2,2.



Given (p3,p5) = (1 + 2¢,1), where ¢ is small, the optimal consumption bundles
for consumer 1 are (2,1),(1,2), and (0, 3) and the optimal consumption bundle
for consumer 2 is (1,2) and (0, 3) . Hence it is an equilibrium for both consumers
to consume their endowments without any trade given (pf,ps) = (1+ 2¢,1).
However, since consumer 1 is indifferent between (2,1) and (1,2), consumer 2
strictly prefers (2,1) to (1,2), a feasible allocation (z1,22) = ((1,2),(2,1)) is
more efficient than ((2,1),(1,2)).

(e) (2 pts.) Now the local nonsatiation assumption is satisfied because good
2 is divisible and each consumer always prefers more consumption of good 2.
So the standard proof of the first welfare theorem works, which is as follows.

Let (z*,p*) be a Walrasian equilibrium. Suppose that it is not Pareto-
efficient. Then there is a different feasible allocation «’ = (2, z5) such that
x} =1 x7 and xo =9 x5 with one consumer strictly prefers z more.

Suppose z} =1 x} without loss of generality. Since z7 is an optimal choice
for consumer 1, it must be the case that consumer 1 cannot afford z}, i.e.
p* -z} > p* - ep. For consumer 2, it must be the case that p* -z, > p* - eq,
otherwise consumer 2 can purchase z, and add a little bit more of good 2
instead of consuming x5 and get strictly better off. So we have

p* (2] +xh) >p" - (e1+ea).

On the other hand, since the equilibrium price p* must be strictly positive
and 2’ > 0 is feasible (i.e., 2} + 25 < e1 + e3), we have p* - (2] + z}) < p* -
(e1 + e3) . This is a contradiction.



Repeated Games ROW and COL play the following asymmetric version
of Prisoner’s Dilemma infinitely often. They discount future payoffs at the
constant rate § > 0.

C D
Cl(44) ] (-2,5)
D | (2,0) | (1,1)

(a) Find the smallest discount factor for which there is a SGPE in which
(C,C) is played every period.

(b) Find the smallest discount factor for which there is a SGPE in which
play alternates (C,C), (D,C), (C,C), (D,C), ...

(c¢) Find the smallest discount factor for which there is a SGPE in which
play alternates (C,C), (C,D), (C,C), (C,D), ...

Solution

Preliminary [1 pt] Note first that there is a unique NE: (D,D). Moreover
the NE achieves for both players the min-max payoff. Hence the smallest
discount factor will always be achieved using the punishment of reverting to
NE forever.

(a) [2 pts] One-step-deviation principle = ROW cannot gain by deviating, so
we only have to worry about COL deviating. Payoffs to COL for complying
and deviating are

-

Comply 4+ 40 + 46 + ...

[e9)

f— 1 —
)
Deviate 5+ +0%+ ... :5_'—17(5
COL (weakly) prefers Comply to Deviate if and only if

§>1/4



(b) [4 pts ] If play in the current period is supposed to be (C,C) then ROW
cannot gain by deviating. Payoffs to COL for complying and deviating are

4
1= 42

1)
Deviate 5+ 462 +... :5+1—_5

Comply 4+ 0§ +46%+ ...

Hence COL (weakly) prefers Comply to Deviate if

452 -5 —-1>0
which reduces to
5> 1 +8\/ﬁ

If play in the current period is supposed to be (D,C) then both ROW and
COL can gain by deviating. Payoffs to ROW for complying and deviating
are

2+ 40

Comply 2446 +20% + ... :1+62
)

Deviate 4+ 8+ 62+ ... :4+ﬁ

Hence ROW (weakly) prefers Comply to Deviate if
36°+35—2>0

which reduces to

5> M
- 6
Payoffs to COL for complying and deviating are
Comply 0446400 4. =20
ply e =g
1
Deviate 1+6+6%2+... =1

Hence COL (weakly) prefers Comply to Deviate if

o>

[\
Ll —



In order for this to be SGPE we must have

1+\/1_7—3+\/§1}_1+\/ﬁ
s 6 '3[ 8

52max{

(c) [3 pts] If play in the current period is supposed to be (C,D) then ROW’s
payoff if he complies is

(—2) + 46 + (—2)8° + . ..
The long run average is
(1—=0)[(=2)+45+ (=2)0* +.. ] < 1

Since ROW’s minmax long run average payoff is 1, this means ROW can
always deviate and gain for every § > 0. Hence there is no § for which
this is a SGPE.



Differentiated Commodities Two firms produce differentiated commodi-
ties for sale in a single market. The firms have 0 fixed costs and constant
marginal costs c1,cy > 0. The market demands are

g = (I1—p1+ 2]72)+
@ = 2+p—p)"

Suppose first that the firms choose prices simultaneously so that the firms
are playing a strategic form game.

(a) For what values of ¢1, ¢y (if any) is there a (pure strategy) Nash equi-
librium in pure strategies in which both firms sell a positive quantity?
For these values (if any), find (at least) one.

(b) For what values of ¢, ¢ (if any) is there a (pure strategy) Nash equi-
librium in pure strategies in which only firm 1 sells a positive quantity?
For these values (if any), find (at least) one.

(c) For what values of ¢1, ¢y (if any) is there a (pure strategy) Nash equi-
librium in pure strategies in which only firm 2 sells a positive quantity?
For these values (if any), find (at least) one.

In all of the above, don’t worry about knife-edge cases in which one firm is
indifferent to operating or not.

Now suppose that firm 1 chooses its price first and firm 2 observes the choice
of firm 1 before choosing its price, so that the firms are playing an sequen-
tial /extensive form game.

(d) For what values of ¢, ¢y (if any) is there a (pure strategy) subgame
perfect equilibrium in which both firms sell a positive quantity? For
these values (if any), find (at least) one.

(e) For what values of ¢y, co (if any) is there a (pure strategy) subgame
perfect equilibrium in which only firm 1 sells a positive quantity? For
these values (if any), find (at least) one.



(f) For what values of ¢y,cy is there a (pure strategy) subgame perfect
equilibrium in which only firm 2 sells a positive quantity? For these
values (if any), find (at least) one.

In all of the above, don’t worry about knife-edge cases in which one firm is
indifferent to operating or not.

Solution

The profit functions of the firms are
I, = (1—pi+2p)(p1—c1)
I = (2+p1—p2)(p2—c2)

provided profits are positive (ignoring knife-edge cases); otherwise profits are
0.

(a) [2 pts] If both firms sell positive quantities then profits are strictly pos-
itive and best responses are determined by the first order condition

Oz@Hl(?pl = 1+Cl—2p1+2p2
0=0I0p, = 2+cy+pl—2p

This gives best responses as follows

o= (1/2)(1+ ¢ + 2p9)
pe = (1/2)(2+c2+p1)

Solving simultaneously gives

P = 24c+c
ps = (1/2)(5+ 1 + 2¢9)

Check that at prices p7, p5 both firms are making positive profits. Hence for
all ¢1, co this is the unique NE in which both firms sell positive quantities.

(b) [2 pts| If only firm 1 sells a positive quantity then equilibrium prices
pi, p5 must have the property that the demand for firm 2’s product is 0;
ignoring knife-edge cases this means

24+p1—p; <0
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If this is true then (by the best response calculated above) we must have
pi=(1/2)(1+ e+ 2p2) > (1/2)(1 4 1 + 4 + pi)

which is absurd. Hence there cannot be an equilibrium in which only firm 1
sells a positive quantity.

(c) [2 pts] If only firm 2 sells a positive quantity then equilibrium prices p3, p;
must have the property that the demand for firm 1’s product is 0; ignoring
knife-edge cases this means

1—p1+2p, <0
and then (by the best response calculated above)
py=(1/2)2+c2+p1) > (1/2)(2+ 2 + 1+ 2p3)

which is absurd. Hence there cannot be an equilibrium in which only firm 2
sells a positive quantity.

(d) [2 pts] If firm 1 chooses its price p; first and both firms sell positive
quantities then firm 2’s best response is as above so firm 1 maximizes

l—pi+2+c+p)p—a)=0B+c)(p —a)

But this has no maximum, so there is no such SGPE. [Note: non-existence
does not violate any general theorems because profits can be unbounded!]

(e) [1 pt] Suppose firm 1 sets a very high price. Then firm 2 can always set
a price that is above ¢, and for which it sells a positive quantity. Hence the
best response for firm 2 involves selling a positive quantity so we are back in
(d). Hence there is no such equilibrium.

(f) [1 pt] Asin (d) there is no such equilibrium.



