
Fall 2016

1. Stochastic Dominance

There are three lotteries p1; p2; p3; each of which generates �$100; $50; or
$200 with the following probability respectively.

p1 (�100) = 0:2; p1 (50) = 0:4; p1 (200) = 0:4

p2 (�100) = 0:1; p2 (50) = 0:5; p2 (200) = 0:4

p3 (�100) = 0; p3 (50) = 0:65; p3 (200) = 0:35

Answer the following questions.

(a) Find all pairs of lotteries for which one lottery is �rst order stochastically
dominated by the other. Explain why there is no other such pair.

(b) Find all pairs of lotteries for which one lottery is second order stochas-
tically dominated by the other. Explain why there is no other such pair.

(c) Consider another lottery ep with the probability distribution: ep (�100) =
x; ep (50) = y; ep (200) = 1 � x � y: Characterize the range of x and y in which
p1 is �rst order stochastically dominated by ep:
(d) Characterize the range of x and y in which p1 is second order stochasti-

cally dominated by ep:
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Answer for Q1

(a) (2.5 pt). p is �rst order stochastically dominated by q if and only if
q (�100) � p (�100) and q (�100) + q (50) � p (�100) + p (50) (which is equiv-
alent to p (200) � q (200)). So p1 is �rst order stochastically dominated by
p2: Other potential pairs are (p2; p3) and (p1; p3) as p3 (�100) � pi (�100) for
i = 1; 2: But neither p1 nor p2 is �rst order stochastically dominated by p3
because p3 (200) < pi (200) for i = 1; 2:

(b) (2.5 pt). p is second order stochastically dominated by q if and only if
q (�100) � p (�100) and q (�100)�150+(q (�100) + q (�50))�x 5 p (�100)�
150 + (p (�100) + p (�50)) � x for all x 2 [0; 150]: This can be simpli�ed to
q (�100) � p (�100) and 2q (�100)+q (�50) � 2p (�100)+p (�50). We already
know that p1 is second order stochastically dominated by p2 (because FOSD
implies SOSD). In addition, according to the above inequalities, p2 is second
order stochastically dominated by p3. Hence p1 is second order stochastically
dominated by p3 as well (as SOSD is transitive). There is no other pair because
SOSD holds strictly for each pair.

(c) (2.5 pt) p1 is �rst order stochastically dominated by ep if and only if
x � p1 (�100) and p1 (200) � 1� x� y: Thus x � 0:2 and 0:4 � 1� x� y

(d) (2.5 pt) p1 is second order stochastically dominated by ep if and only if
x � p1 (�100) and 2x+y � 2p1 (�100)+p1 (50) : Thus x � 0:2 and 2x+y � 0:8
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2. Pareto E¢ ciency with Quasi-Linear Preference

Consider a pure exchange economy Epure =
�
fXi; �i; eigi=1;2

�
with two

goods and two consumers, where Xi = R2+ and e1 + e2 � 0. Consumer i�s
preference is represented by a quasi-linear utility function vi (x i;1)+xi;2; where
vi is a di¤erentiable, increasing and strictly concave function.

(a) De�ne Pareto e¢ ciency and show that an allocation x = (x1; x2) 2 R4+
is Pareto-e¢ cient if and only if there exists u2 such that x solves the following
problem:

max
xi�0

v1 (x 1;1) + x1;2

s.t. v2 (x 2;1) + x2;2 � u2
2X
i=1

x i �
2X
i=1

e i:

(b) Write down the Kuhn-Tucker conditions for the problem in (a) and
discuss brie�y why they are necessary and su¢ cient for the optimal solutions
(assume that both consumers consume a positive amount of good 1).

Note: For the next two questions (c) and (d), you can provide a graphical
answer using the Edgeworth box . But it needs to be accompanied with a clear
enough explanation.

(c) Show that, if x0 and x00 are interior Pareto e¢ cient allocations in R4++;
then x0i;1 = x

00
i;1 for i = 1; 2: That is, each consumer consumes exactly the same

amount of good 1 across all interior Pareto-e¢ cient allocations.

(d) Suppose that v1 (x 1;1) = log x1;1, v2 (x 2;1) = 2 log x2;1; and e1 = e2 =
(1; 1) : Find all Pareto e¢ cient allocations and depict them in the Edgeworth
box.
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Answer for Q2

(a) (3 pt.)
The de�nition of PE is standard.
Suppose that x� is Pareto-e¢ cient. Then x� must solve the above problem

with u2 = v2
�
x�2;1

�
+ x�2;2: Otherwise, there exists a feasible allocation x

0 that
guarantees at least u2 to consumer 2 and makes consumer 1 better o¤ (i.e.
v1
�
x01;1

�
+x01;2 > v1

�
x�1;1

�
+x�1;2). This is a contradiction. Conversely, suppose

that x� solves the above problem for some u2: If it is not Pareto-e¢ cient, then
there exists a feasible allocation x0 that satis�es vi

�
x0i;1

�
+x0i;2 � vi

�
x�i;1

�
+x�i;2

for i = 1; 2 with at least one inequality being strict. We can �nd such x0 for
which the inequality is strict for consumer 1 (if the inequality is strict only for
consumer 2, consumer 2�s goods can be transferred to consumer 1). This is a
contradiction because x� is supposed to be an optimal solution for the above
problem with u2:

(b) (2 pt.)
The Kuhn-Tucker conditions are

dv1 (x1;1)

dx1;1
� �1 = 0; 1� �2 � 0 (= 0 if x1;2 > 0)

�
dv2 (x2;1)

dx2;1
� �1 = 0; �� �2 � 0 (= 0 if x2;2 > 0)

� (v2 (x 2;1) + x2;2 � u2) = 0; � � 0; v2 (x 2;1) + x2;2 � u2;
2X
i=1

e i =

2X
i=1

x i (because �` > 0).

Since clearly � must be positive and we can assume u2 = v2 (x 2;1) + x2;2, it is
OK to the following simpler conditions:

dv1 (x1;1)

dx1;1
� �1 = 0; 1� �2 � 0 (= 0 if x1;2 > 0)

�
dv2 (x2;1)

dx2;1
� �1 = 0; �� �2 � 0 (= 0 if x2;2 > 0)

2X
i=1

e i =
2X
i=1

x i.

They are necessary and su¢ cient because (necessity:) the constraint set
is a convex set (de�ned via upper contour sets of concave functions).and has
an interior point (Slater condition, note that x � 0), and (su¢ ciency:) the
objective function (utility function) is concave and the constraint set is a convex
set.

(Note: The Edgeworth box can be used to answer (c) and (d) as long as
clear enough explanation is o¤ered).
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(c) (2 pt) If xi � 0 for i = 1; 2; then �2 = 1 hence � = 1: Thus
dv1(x1;1)
dx1;1

=
dv2(x2;1)
dx2;1

(or this just follows from MRS1 = MRS2 which holds at any interior
Pareto e¢ cient allocation): Since vi is strictly concave, there is at most one

(x1;1; x2;1) that satis�es this and
2X
i=1

ei;1 =
2X
i=1

xi;1:

(d) (3 pt) In this case, the conditions are

1

x1;1
� �1 = 0; 1� �2 � 0 (= 0 if x1;2 > 0)

2�

x2;1
� �1 = 0; �� �2 � 0 (= 0 if x2;2 > 0)

2X
i=1

xi = (2; 2) .

There are three cases: (i) when xi;2 > 0 for i = 1; 2; then x1;1 = 2
3 and

x2;1 =
4
3 . So the solution is (x1; x2) =

��
2
3 ;m

�
;
�
4
3 ; 2�m

��
with m 2 (0; 2) in

this case, (ii) If x1;2 = 0 and x2;2 = 2; then x1;1 and x2;1 are determined by
1
x1;1

= 2�
x2;1

with any � = 1 and x1;1 + x2;1 = 2: So the solution is (x1; x2) =��
2
3 � �; 0

�
;
�
4
3 + �; 2

��
with � 2

�
0; 23

�
in this case, (iii) If x1;2 = 2 and x2;2 = 0;

then x1;1 and x2;1 are determined by 1
x1;1

= 2�
x2;1

with any � 2 (0; 1] and x1;1 +
x2;1 = 2: So the solution is (x1; x2) =

��
2
3 + �; 2

�
;
�
4
3 � �; 0

��
with � 2

�
0; 43

�
in

this case. In addition to these, there are two extreme Pareto e¢ cient allocations
that are not captured by these KT conditions: (x1; x2) = ((2; 2) ; (0; 0)) and
(x1; x2) = ((0; 0) ; (2; 2)) :
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Problem 3: Cournot Competition with Capacity Two firms produce
an identical good for sale in a single market. Both firms have 0 fixed cost
and 0 marginal cost. The market inverse demand function is

P = 1−Q

Firms choose quantities and the market determines the price.

(i) Suppose first that capacity is exogenous: firm i has capacity ki ∈ [0, .5].
If firms simultaneously choose actual quantities (subject to their ca-
pacity constraint), find the pure strategy NE of the one-shot game.
[Suggestion: It may be easier to analyze case-by-case.]

(ii) Now suppose capacity is endogenous. Firms play a two-stage game.
In the first stage, firms simultaneously choose capacities ki ∈ [0, .5];
between stages, capacity choices are revealed; in the second stage firms
simultaneously choose quantities (subject to their capacity constraint).

Find all the SGPE of the two-stage game.
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Problem 3: Solution

If the firms choose quantities q1, q2 then the profit of Firm i is Πi(q1, q2) =
qi(1− q1 − q2) and the derivative of profit is

∂Πi

∂qi
= 1− 2qi − qj

Note that this is positive provided that q1 ≥ (1− q2)/2. Hence the FOC is

1− 2qi − qj = 0

The two FOC’s have a unique simultaneous solution: q1 = q2 = 1/3.

(i) Consider four cases

(a) k1 ≥ 1/3, k2 ≥ 1/3: The FOC’s have a simultaneous solution, so the
unique NE is q1 = q2 = 1/3.

(b) k1 < 1/3, k2 < 1/3: Note that Πi is increasing in qi for both i so the
unique solution is for both firms to choose quantity = capacity. Hence
the unique NE is q1 = k1, q2 = k2.

(c) k1 < 1/3, k2 ≥ 1/3: The FOC do not have a simultaneous solution so
at least one firm must choose at its capacity constraint. If firm 1 is
NOT choosing at its capacity constraint firm 2 must be choosing at
its capacity constraint so q2 = k2 and the optimal choice for firm 1 is
q1 = (1− k2)/2 and the optimum for firm 2 is

q2 = (1− q1)/2 = [1− (1− k2)/2]/2 = 1/4 + k2/4

Because k2 > 1/3, the optimal choice for firm 2 is feasible so choosing
at its capacity constraint is not optimal; this is a contradiction. Hence
we conclude that firm 1 MUST be choosing at its capacity constraint:
q1 = k1.

Hence firm 2’s optimal choice is q2 = (1−k1)/2 if this is feasible, so we
have two possibilities:

(1) k2 > (1 − k1)/2 in which case the unique NE is q1 = k1, q2 =
(1− k1)/2.
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(2) k2 ≤ (1− k1)/2 in which case the unique NE is q1 = k1, q2 = k2.

(d) k1 ≥ 1/3, k2 < 1/3 This is the same as (c) except with the roles of firms
1, 2 reversed.

(ii) CLAIM: In every SGPE of the two-stage game, we must have k1 ≥
1/3, k2 ≥ 1/3. To see this, notice that in all the other cases at least one firm
sets capacity below 1/3; say k1 < 1/3. In a SGPE, firms are playing NE in
the second stage, so we must be in either case (b) or case (c) of part (i). In
either case compute the profit of firm 1 and note that it is strictly increasing
in k1; hence firm 1 would have a profitable deviation in the first stage, a
contradiction.

Hence in every SGPE of the two-stage game, play in the first stage must be
k1 ≥ 1/3, k2 ≥ 1/3 and by case (a) of part (i) play in the second stage must
be q1 = 1/3, q2 = 1/3.

CONCLUSION: The SGPE are precisely these:

• First Stage k1 ≥ 1/3, k2 ≥ 1/3.

• Second Stage IF k1 ≥ 1/3, k2 ≥ 1/3 then q1 = 1/3, q2 = 1/3.
OTHERWISE play is according to the specifications of cases (b), (c),
(d) of part (i).
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Problem 4: Repeated Differentiated Commodities Two firms produce
different goods for sale in a single market. Each firm’s production imposes a
negative externality on the other: if the firms produce quantities q1, q2 then
their profits will be

Π1(q1, q2) = (120− q2)q1 − q21
Π2(q1, q2) = (120− q1)q2 − q22

(i) Suppose first that the firms interact only once. Find the (pure strat-
egy)Nash equilibrium of the game and the (symmetric) Pareto opti-
mum.

(ii) Now suppose the firms interact infinitely often and discount future
profits with the discount factor δ < 1.

(a) For what values of δ (if any) is there a SGPE in which firms play
the (symmetric) Pareto optimum in each period in which there has
been no deviation and firms punish any deviation by permanent
reversion to the one shot Nash equilibrium?

(b) For what values of δ (if any) is there a SGPE in which firms play
the (symmetric) Pareto optimum in each period in which there has
been no deviation and punish any deviation by playing one round
of min-max against the deviator? (After punishment is complete
and there has been no deviation from punishment play returns to
the (symmetric) Pareto optimum.)
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Problem 4: Solution

(i) At the symmetric Pareto Optimum firms choose q1 = q2 = x to maximize
2[(120− x)x− x2]. The FOC is

0 = 2[120− x− x− 2x] = 240− 8x

So the symmetric PO is q1 = q2 = x = 30 and each firm’s profit is 1800.

To solve for the one-shot NE, write the FOC:

120− q2 − 2q1 = 0

120− q1 − 2q2 = 0

so the one-shot NE is q1 = q2 = 40 and each firm’s profit is 1600.

(ii)(a) While firms are playing the symmetric PO then each firm earns 1800
per period. An optimal one-period deviation by either firm is to choose y to
maximize (120 − 30)y − y2, so the optimal deviation is y = 45. This gives
the deviating firm one-period profit of (120− 30)(45)− (45)2 = 2025. Hence
the firm gains 2025−1800 = 225 once but (since play reverts to the one-shot
NE) it loses 1800− 1600 = 200 in each subsequent period. Hence deviation
is NOT profitable if

225− 200δ/(1− δ) ≤ 0

Hence deviation is not profitable and this is a SGPE if δ ≥ 225/425 = 9/17.

(ii)(b) While firms are playing the symmetric PO then each firm earns 1800
per period. An optimal one-period deviation by firm 1 (say) is to choose
q1 = y = 45 so firm 1 gains 2025 − 1800 = 225 once. After the deviation,
firm 1 will be punished in the next period by the minmax play which is
q1 = 0, q2 = 120 so it will lose 1800 in the next period, after which play
reverts to PO again, so deviation by firm 1 is NOT profitable if

225− 1800δ ≤ 0

Hence deviation is not profitable if δ ≥ 225/1800 = 1/8.

However this is not enough to guarantee that this strategy is a SGPE because
we have to check that the punishment is part of a SGPE. In (ii)(a) this is
automatic because playing a one-shot NE in every period is always a SGPE;
but playing minmax in every period is not a SGPE. Here we have to check
that firm 2 is willing to punish. If firm 2 does punish, it gets 0 this period
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and (because play reverts to PO afterward) 1800 in each succeeding period.
A maximal deviation by firm 2 is to choose q2 = z to maximize (120−0)z−z2
to the maximal deviation is z = 60. If firm 2 deviates its one-period profit
will be (120− 0)(60)− (60)2 = 3600. But then firm 2 will be minmaxed for
one period – in which it will get 0 – and then play will return to PO ever
after. Hence firm 2 will gain 3600 in the current period and lose 1800 in
only one subsequent period – so firm 2 will always gain by deviating from
this punishment, no matter what δ is. Hence there is no δ for which this is
a SGPE. [Note: In order to construct a SGPE it would be necessary for the
punishment to last more than one period; this would provide the incentive
firm 2 to carry out the punishment.]
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