UCLA

Department of Economics

Ph. D. Preliminary Exam Micro-Economic Theory

(FALL 2006)

Instructions:

- You have 4 hours for the exam
- Answer any 5 out of the 6 questions. All questions are weighted equally. Answering fewer than 5 questions is not advisable, so do not spend too much time on any question. Do NOT answer all questions.
- Use a SEPARATE bluebook to answer each question.

1. Walrasian Equilibrium and Time

Discuss each of the following statements. Make sure you take a clear position, even if you present arguments supporting or opposing a particular statement.

- (a) "Adding time to the one-period N commodity Walrasian Equilibrium model is simply a matter of adding N markets for each of the T time periods. The welfare theorems trivially generalize."
- (b) "All that is really needed is for the N commodity markets to remain open each period and to introduce T-1 markets for bonds of each possible maturity date."
- (c) "The T period economy generalizes directly to an infinite horizon Walrasian Equilibrium, simply by letting the number of periods increase without bound."
- (d) "For the finite period case, even if consumers have very different beliefs, it is easy to incorporate uncertainty as well."

2. Monopoly response

A firm is a price setter in its output market but a price-taker in its m input markets. Suppose that the price of input 1 rises.

- (a) In each case either show that the statement is true or explain why it is false. Note that you should understand any word like "rise" to mean "weakly rise."
- (i) The firms demand for input 1 will fall.
- (ii) The firms demand for the input will change more in the long-run than in the short run.
- (iii) The firms output will fall.
- (iv) Demand for the other inputs may rise or fall.
- (b) How would you answer to (i) and (ii) change if the firm is also a price setter in the other input markets?

3. Subgame Confirmed Nash Equilibrium

Find all pure subgame confirmed Nash equilibria of the following three-player centipede game. Player 1 can drop out in which case payoffs are (5,6,7). If he does not drop out, player 2 moves. If player 2 drops out payoffs are (4,8,6). If player 2 does not drop out player 3 moves. If player 3 drops out payoffs are (3,7,5). If player 3 does not drop out, all players get (8,9,10).

4a Replicator

The replicator dynamic requires that the probabilities a strategy is used grow at a rate that is a linear function of the difference between the utility the strategy is getting and the mean payoff to any strategy. The continuous time best-response dynamic requires that the probabilities a strategy is used grow at a rate if the strategy is a best-response, and decline if it is not. In a 2x2 game with one population what is the relationship between a replicator and best-response dynamic?

5. Incentive-Efficiency Tradeoffs in Teams

Output y is produced by the joint efforts of two team members according to $y(e_1, e_2) = 3(e_1e_2)^{1/3}$, $e_i \ge 0$. The utility to i is $U_i(y_i, e_i) = y_i - \sigma_i e_i$, where y_i is the quantity of y received by i and $\sigma_i > 0$ is the marginal disutility of effort.

(a) Find the efficient allocation of effort as a function of σ_1 and σ_2 . [Suggestion: Compare the profit-maximizing choice of a price-taking producer facing a price of 1 for the output y and prices σ_1 and σ_2 for the inputs e_1 and e_2 .]

[For parts (b) and (c), assume (σ_1, σ_2) is known and let $\bar{e} = (\bar{e}_1, \bar{e}_2)$ be the optimal solution to (a).]

(b) Suppose payments to team members equals output produced, i.e.,

(†)
$$y_1(e_1, e_2) + y_2(e_1, e_2) = y(e_1, e_2)$$
 for all (e_1, e_2)

Using non-cooperative (Nash) equilibrium, show that there is NO reward scheme $y_1(e_1, e_2)$, $y_2(e_1, e_2)$ that would give team members the incentive to choose \bar{e} .

- (c) Suppose one-sided balance, i.e., $(\dagger\dagger)$ $y_1(e_1, e_2) + y_2(e_1, e_2) \leq y(e_1, e_2)$, the difference being the penalty that team members pay to an outside mediator. Show that there IS a reward scheme (penalty function) for which \bar{e} would be a non-cooperative equilibrium. Can you see possible problems with such a scheme?
- (d) Is the reward scheme in (c) implementable if (σ_1, σ_2) is NOT known? Are there any reward schemes such that team members would have the incentive to reveal their σ_i so that the optimal $(\bar{e}_1(\sigma_1, \sigma_2), \bar{e}_2(\sigma_1, \sigma_2))$ could be implemented?

6. "Cournot" Monopolistic Competition with Large Numbers

In the economy with N+1 individuals, the utility of i is

$$U_i^N(z_{i1},\ldots,z_{iN+1},m_i) = \sum_{j\neq i} v_N(z_{ij}) - c_N(z_{ii}) + m_i,$$

where $z_{ij} \geq 0$, $i \neq j$, and $z_{ii} \leq 0$, indicating that there are as many commodities as individuals, individual i is the only supplier of commodity j = i, and each individual does not consume the commodity he supplies (hence, there are N demanders). In addition,

$$v_N(z) = 10z - B_N z^2/2$$
 and $c_N(z) = C_N z^2/2$.

Therefore, the economy N is described by two numbers, $B_N > 0$ (the taste parameter) and $C_N > 0$ (the cost parameter). As consumers, individuals are price-takers, but as suppliers they can restrict the amount they supply (à la Cournot) by changing their cost functions from c_N to

$$c_N^K(z) = c_N(z)$$
 if $|z| \le K$, $c_N^K(z) = \infty$, if $|z| > K$, for any $K \ge 0$.

Outcomes are determined by Walrasian equilibrium subject to the qualification that suppliers choose their capacity constraints (K) to maximize profits.

[The symmetry of the example implies that answers to the following questions can be obtained by examining demand and supply behavior in any one market.]

- (a) Suppose N=1 and $B_1=C_1=1$. Show that it is profitable to impose capacity constraints.
- (b) Under which of the situations below could individuals ignore capacity constraints and behave as simple price-takers as $N \to \infty$. Explain.
 - (i) $B_N = C_N = 1$ for all N
- (ii) $B_N = N$, $C_N = 1$ for all N
- (iii) $B_N = N, C_N = 1/N$
- (iv) $B_N = 1$ for all N, $C_N = 1/N$