Second Year Field Examination in Econometrics September 10, 2010

There is a total of seven questions, three in Part I, two in Part II, and two in Part III. Please answer six out of the seven available questions.

Please provide as detailed information as possible. please keep in mind that the answers need not be long for them to be precise.

Part I:

Question 1:

Assume the following:

- 1. There are four potential values Y_0, Y_1 and D(0), D(1). We also observe an instrument Z, which is binary.
- 2. Y_1 denotes the potential outcome under treatment, and Y_0 denotes the potential outcome under control.
- 3. D(1) denotes the potential treatment when Z = 1, and D(0) denotes the potential treatment when Z = 0.
- 4. We assume that $(Y_0, Y_1, D(0), D(1))$ is independent of Z.
- 5. We also assume that $D(0) \leq D(1)$.

Prove the following equality:

$$E[Y_1 - Y_0 | D(1) - D(0) = 1] = \frac{E[Y | Z = 1] - E[Y | Z_i = 0]}{E[D | Z = 1] - E[D | Z = 0]}$$

Question 2:

Consider the linear regression model

$$y_i = x_i\beta + \varepsilon_i$$

where it is known that $E[\varepsilon_i | z_i] = 0$. (For simplicity, we will assume that every random variable is a scalar.) This implies that

$$E\left[h\left(z_{i}\right)\left(y_{i}-x_{i}\beta\right)\right]=0$$

where $h(z_i) = E[x_i | z_i]$. Consider implementing this moment restriction for estimating β , i.e., consider $\hat{\beta}$ that solves

$$\frac{1}{n}\sum_{i=1}^{n}\widehat{h}(z_{i})\left(y_{i}-x_{i}\widehat{\beta}\right)=0$$

where $\hat{h}(z_i)$ is a nonparametric estimator of $h(z_i) = E[x_i | z_i]$. Using the Newey formula, find the influence function of $\sqrt{n}(\hat{\beta} - \beta)$, and characterize the asymptotic variance.

Question 3:

Consider the standard panel model

$$y_{it} = \alpha_i + \varepsilon_{it}, \quad i = 1, \dots, n; t = 1, \dots, T$$

where ε_{it} is iid $N(0, \theta_0)$. Derive the MLE for θ , and find its probability limit as $n \to \infty$ while T is fixed. Let θ_T denote such a probability limit. Show that θ_T allows the expansion of the form

$$\theta_T = \theta_0 + \frac{B}{T} + o\left(\frac{1}{T}\right)$$

What is B?

Part II:

Question 1:

Consider the model

$$Y = m\left(X,\varepsilon\right)$$

where $Y \in R$ and $X \in R^K$ are observable, $\varepsilon \in R$ is unobservable, and m is differentiable in xand continuous in ε . For any random vector W, let $f_W(w)$ denote the density of W at w and let $f_{W_1|W_2=w_2}(w_1)$ denote the conditional density of W_1 at $W_1 = w_1$ given that $W_2 = w_2$.

Suppose that you are interested in

$$\beta(x) = \int \frac{\partial m(x,\varepsilon)}{\partial x} f_{\varepsilon|X=x}(x) dx$$

- 1. Provide an estimator for $\beta(x)$ when ε is distributed independently of X. What can you say about the asymptotic properties of the estimator that you provided? Explain.
- 2. Provide an estimator for $\beta(x)$ when ε is not distributed independent of X, but for some observable Z, it is known that for all x, ε, z ,

$$\frac{f_{\varepsilon,X,Z}\left(\varepsilon,x,z\right)}{f_{Z}(z)} = \frac{f_{\varepsilon,Z}\left(\varepsilon,z\right)}{f_{Z}(z)} \frac{f_{X,Z}\left(x,z\right)}{f_{Z}(z)}$$

What can you say about the asymptotic properties of the estimator that you provided? Explain.

3. Provide an estimator for $\beta(x)$ when (i) ε is not distributed independently of X, but (ii) for an unknown function s, which is strictly increasing in an unobserved η , and for an observed Z that is distributed independently of (ε, η) ,

$$X = s\left(Z,\eta\right).$$

What can you say about the asymptotic properties of the estimator that you provided? Explain.

Question 2:

Suppose that the model that determines the distribution of (Y_1, Y_2) given (X_1, X_2) is

$$Y_1 = m_1 (Y_2, \varepsilon_1 + X_1) Y_2 = m_2 (Y_1, \varepsilon_2 + X_2)$$

where m_1 and m_2 are continuous functions, both strictly increasing in their last coordinates, and $(\varepsilon_1, \varepsilon_2)$ is an unobserved random vector of unknown everywhere strictly positive density. Assume that (X_1, X_2) is distributed independently of $(\varepsilon_1, \varepsilon_2)$ and the distribution of (Y_1, Y_2, X_1, X_2) is observed. What can you say about the identification of the derivatives of m_1 and m_2 ? Provide details.

Part III:

Question 1—Dynamic Programming:

Consider a three-period model in which an individual makes decisions about three variables: consumption c_t , leisure l_t , and the amount of time invested in acquiring human capital, say h_t^h . Let also h_t^l denotes the number of hours worked. Note that

$$l_t + h_t^h + h_t^l = L,$$

where L is a fixed number of hours.

Each period utility is given by

$$u_t(c_t, l_t) = u(c_t, l_t) = K_0 c_t^{\gamma_1} l_t^{\gamma_2},$$

In each period the individual obtains a fixed amount (known in advance) of unearned income, denoted a_t . If the individual works then he/she is paid an hourly wage w_t , which is a function of the level of human capital H_t , that is,

$$\log w_t = \alpha_0 + \alpha_1 H_t + \varepsilon_t,$$

where ε_t is an idiosyncractic shock and H_t is a measured level of human capital that is evolved according to

$$H_t = H\left(H_{t-1}, I_t, h_t^h\right),\,$$

where I_t is the monetary investment in human capital.

The individual starts with an endowment of B_0 , and earned an interest rate of r_t for any unused monetary resources carried over from period t to period t + 1. Assume that the interest rates for the three periods are known in advance.

For the questions specified below, if you think that some needed information has been omitted, please make assumption about that needed information.

- 1. Define the state vector, say z_t .
- 2. Specify all the necessary budget constraints, regarding money and time.
- 3. Write the value function at each period for the individual decision maker. Make sure to provide the value function for *all* possible state of nature and choices.
- 4. Provide the full list of parameters that need to be estimated. Let the vector containing the full set of the model's parameters be denoted by θ_0 .
- 5. Provide details about the data that one would need in order to be able to estimate θ_0 .
- 6. Provide detailed information about a method by which you propose to estimate the parameter vector θ_0 . Keep in mind that there might be more than one method for estimating θ_0 . You should answer this question providing very detailed information, assuming you are giving instructions to a professional programmer who knows nothing about economics.
- 7. Suppose now that you want to consider a policy experiment in which the government will subsidize investment in human capital by offering reimbursement of 50% on the amount invested (i.e., I_t). How would you go about examining the impact of such policy?

Question 2—Generalized Method of Moments:

Consider the model given by

$$Y_i = g\left(X_i; \theta_0\right) + \varepsilon_i,$$

where the data given to you is $W_i = (Y_i, X_i, Z_i)$, Z_i is $K_z \times 1$ vector of exogenous variables, and i = 1, ...N. Define the moment function

$$\varphi\left(Y_{i}, X_{i}, \theta\right) = \left(Y_{i} - g\left(X_{i}; \theta_{0}\right)\right) h\left(Z_{i}\right).$$

$$(2.1)$$

- 1. Under what conditions would the parameter vector θ_0 in (2.1) be identified.
- 2. Suggest an efficient Generalized Method of Moments (GMM) estimator for θ_0 .
- 3. Suppose now that the function $g(X;\theta)$ cannot be analytically computed, but it can be approximated by a simulated version, say $\hat{g}^R(X;\theta)$, where R denotes the number of draws used from the relevant distribution to compute $\hat{g}^R(X;\theta)$. Describe in details how to obtain the simulated GMM estimate for θ_0 .
- 4. Suppose now that you have estimated θ_0 , based on (3) and you want construct a symmetric confidence interval for θ_{02} , the second element in θ_0 , using the bootstrap method. Describe how obtain such confidence interval. Be specific about the way the bootstrap samples are obtained, as well as the procedure followed for each bootstrap sample.